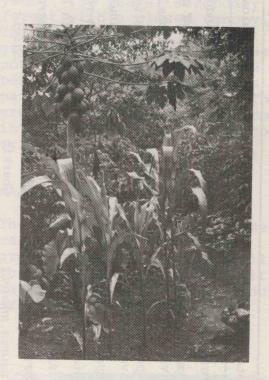
NATURAL CONTROL OF INSECT PESTS IN AN ORGANIC GARDEN

By Wayne C. Gagné, Wau Ecology Institute Morobe Province

INTRODUCTION


Melanesians have been successful organic gardeners for many millennia in slash-and-burn shifting agricultural systems. By organic, we mean relying on natural pest control and fertilization methods rather than on pesticides and commercial fertilizers.

Recently, however, shifting agricultural systems have been stressed by population growth and urban migration. Fallows are increasingly shortened such that fire climax grasslands are expanding at the expense of forest fallows. This has serious long-term human and environmental implications.

To investigate possible alternatives to shifting agriculture, a site-stable (non-shifting) garden was established at Wau Ecology Institute. The part of the investigation reported here concerns the way in which many of the crop pests are controlled by their natural enemies in the garden. These enemies include parasites, predators and pathogens (disease-causing organisms). Control of pests by their natural enemies is called natural control.

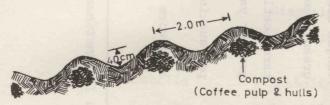
THE GARDEN

The site for the garden was reclaimed from fire climax grassland (kunai grass) at 1 200 m

Crops growing in the organic garden

above sea level. The terrain was similar to that under shifting cultivation nearby, varying from almost flat to places too steep for contour mounds to stay in place. Rainfall in this area averages 1 900 mm per year. The average maximum temperature is 27.2°C and the average minimum temperature is 17.2°C (from nine years' observation).

The information in this article was presented in a paper given at the South Pacific Commission Workshop on Biological Control, Noumea, 6-10 August, 1979.


SOME OF THE CROPS GROWN IN THE SITE-STABLE GARDEN AT WAU (EXCLUDING STAPLE AND HIGH PROTEIN CROPS) TABLE 1.

Botanical Name	Common Name	Botanical Name	Common Name	Botanical Name	Common Name
117; m cooloniam	Shallot	Brassica pekinensis	Won bok	Pastinaca sativa	Parsnip
Allin norman	Leek	Brassica rapa	Turnip	Persea americana	Avocado
Acception political	Chive	var. rapa		Petroselinum crispum	Parsley
Allium serveroprasum Allium cepa	Onion	Capsicum annum var. longum	Capsicum	Physalis peruviana	Cape gooseberry
Amaranthus tricolor	Kumu aupa	Capsicum frutescens	Chilli	Raphanus sattuus	rdatsii
Anethum graveolens	Dill a serie	Chichorium intybus	Chicory	Rheum rhaponiceum	Kiimii mokii
Annona muricata	Soursop	Citrullus vulgaris	Watermelon	Rungla KLOSSLL	מופטעפטעפטניט מ
Annona reticulata	Bullock's	Coriandrum sativum	Coriander	Saccration of period and again	S again
	Guetre Granle	Cucumis anguria	Gherkin	Sorbium edule	Choko
Annorm squamosa	Custata appea	Cucumis melo	Rock melon	Cotamia malmitalia	Highlands
Anthriscus cerețolium	Chervil	Cucumis sativus	Cucumber	serarra parmissoria	pit pit
Apium graveolens	Celery	Cucurbita maxima	Squash	Solanum melongena	Eggplant
Asparagus officirmins	Asparagus	Cucurbita pepo	Pumpkin	Solanum nigrum	Kumu karakap
Beta vuigaris	Silverbeet	Daucus carota	Carrot	Solanum tuberosum	Potato
beta vulgarus var. cicla		Helianthus annus	Sunflower	Spinacia oleracea	Spinach
Brassica caulorapa	Kohl-rabi	Hibiscus esculentus	Okra	Thymus vulagris	Thyme
Brassica napus	Swede	Hibiscus manihot	Aibika	Vicia faba	Broad bean
var. naprobrassica		Hibiscus sabdariffa	Roselle	Vigna sinensis	Snake bean
Brassica oleracea	Cauliflower	Lactuca sativa	Lettuce	var. sesquipedalis	
botrytis	סמפיללים	Lepidium sativum	Cress	Zea mays	Maize
Brassica overaceu capitata	Carrage	Lycopersicum esculentum Tomato	um Tomato		
Brassica oleracea italica	Broccoli	Ocimum basilicum	Basil		

The garden had irregularly shaped borders and covered an area of 0.28 ha. At this size, two labourers working a 5½ day week could just maintain a regular routine of composting, planting, weeding and harvesting.

The most locally abundant agricultural waste (a mixture of coffee pulp and hulls) was used to fertilize the garden. It was applied as compost into contour mounds interplanted at 5 x 5 m intervals with a mixture of fruits, nut and wild tree species. One of each of three types of vegetable was planted in each mound:

- Staples 2 species of taro,
 2 species of yam, sweet
 potato, cassava.
- 2) high protein crops legumes, maize.
- 3) a great variety of other vegetables and greens (see Table 1).

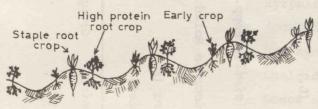


Diagram showing the composting and cropping system in the organic garden

After four to eight months, when the last crop (usually the staple) had been harvested from the mound, the mound was opened. Coffee compost was laid along the centre of the mound at a rate of about 45 kg (1-1.5 full wheelbarrows) for each metre length. At this rate of

application, each hectare received about 460 t/year.

The methods of ground preparation, the planting scheme, and other agronomic practices used, follow traditional Melanesian agriculture and other organic gardening methods.

The garden is surrounded by coffee plantations and many types of natural vegetation ranging from old grasslands to young (15+ years) secondary forest with a closed canopy. This great variety of plant life growing nearby is partly responsible for the wide range of pests, parasites, predators and pathogens in the garden. The great diversity of crops grown in the garden itself also contributes to this.

MAJOR PESTS

The pests found in the garden can be divided into three groups depending on how well they are controlled by their natural enemies. These groups are shown in Table 2.

The holes in this kau kau tuber were probably made by a taro beetle (Papuana sp.)

TABLE 2. INSECT PESTS OF CROPS GROWN IN SITE-STABLE GARDEN AT WAU

	Pest Name	ne		
Group*	Scientific	Common	Method of attack	Crop(s) attacked
I	Crocidolomia binotalis Zell	center grub or cluster grub	larvae eat leaves	cabbage family
I	Dacus atrisetosus complex	fruit flies	larvae bore into fruit	cucumber family
I	Dacus cucurbitae Coq.	fruit fly	larvae bore into fruit	cucumber family
Н	Ophiomyia phaseoli (Coq.)	bean fly	larvae mine seedling roots, stem and leaves	common and adzuki beans
I	Plutella xylostella (L.)	diamond-backed moth	larvae eat leaves	cabbage family
H,	Cassena papuana (Jac.)	leaf beetle	larvae eat roots, adults eat leaves	aibika, beans, peas
II	Heliothis armigera (Hb.)	tomato fruit worm	larvae eat leaves and pierce fruits	tomatoes, capsicums
II	Leucoptera sp.	winged bean blotch miner	larvae mine leaves	winged beans
H	Nesara viridula (L.)	green vegetable bug	nymphs and adults suck fruits	(many)
II	Papuana sp.	taro beetle	adults bore into corms	taro
II	Platypeltocoris similis Popp.	greater yam plant bug	nymphs and adults suck sap	yams
II	Riptortus annulicomis Roisd.	pod-sucking bug	nymphs and adults suck pods	beans, peas
II	Spodoptera litura (F.)	army worm	larvae eat leaves	(many)
III	(About 215 species)			

Group III never destructive. Group II sometimes destructive; * Group I always destructive;

TABLE 3. NATURAL ENEMIES OF GROUP I INSECT PESTS

Pest	Enemy	Action of Enemy
Crocidolomia binotalis	Ropalidia bambusae	predator of larva
	Apanteles sp.	parasite of larva
	Braconidae sp.	parasite of larva
	Palexorista solennis	parasite of larva
	Brachymeria sp.	parasite of pupa
	Xanthopimpla sp.	parasite of pupa
Dacus atrisetosus	Silba sp.	predator of larva
complex	Biosteres sp.	parasite of pupa
	Brachonidae sp.	parasite of pupa
Dacus cucurbitae	Silba sp.	predator of larva
	Biosteres sp.	parasite of pupa
Ophiomyia phaseoli	Brachonidae sp.	parasite of pupa
	Chalcidoidea sp. No. 14*	parasite of pupa
	Chalcidoidea sp. No. 9	parasite of pupa
	Chalcidoidea sp. No. 8	parasite of larva
	Diapriidae sp.	parasite of larva
	Sphegigaster sp.	parasite of larva
Plutella xylostella	Rophalidia bambusae	predator of larva
	Syrphidae sp.	predator of larva.
	Apanteles sp.	parasite of larva
	Brachymeria phya	parasite of pupa
	Chalcidoidea sp.	parasite of pupa
	Genus nr. Paecilomyces	pathogen of larva

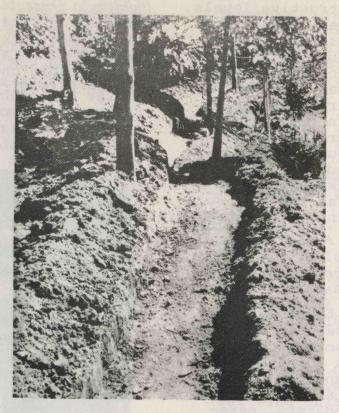
^{*} Number refers to catalogue number at Wau Ecology Institute.

Group I pests always caused over 90% destruction of the crops they attacked no matter how well they had been growing. This group was made up of three species of flies (Ophiomyia phaseoli, Dacus atrisetosus complex and Dacus cucurbitae) and two leaf-Dacus cucurbitae) and two leaf-

xylostella and Crocidolomia binota-

eating caterpillars (Plutella Group II pests became destruct-

TABLE 4. NATURAL ENEMIES OF GROUP II INSECT PESTS

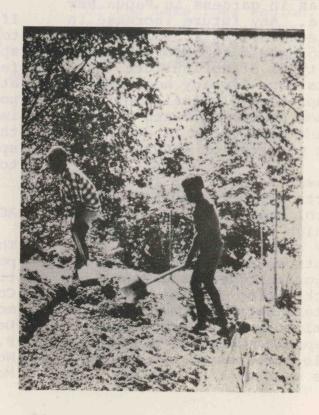

Pest	Enemy	Action of Enemy
Cassena papuana	None seen	resource about 50 to 100
Heliothis armigera	Apanteles sp. No. 6*	parasite of larva
	Chelisocheles morio	predator of larva
	Carcelia (Senometopia)sp.	parasite of pupa
	Enicospilus sp.	parasite of larva
	Tachinidae sp.	parasite of larva
	Genus nr. Paecilomyces	pathogen of larva
Leucoptera sp.	Apanteles (circumscriptus group)	parasite of pupa
	Chalcidoidea sp.	parasite of pupa
	Chosterocerus splendens	parasite of pupa
Nezara viridula	Scelionidae sp.	parasite of egg
more to extensed ***	Trissolcus basalis	parasite of egg
Papuana spp.	None seen	
Platypeltocoris similis	None seen	
Riptortus annulicornis	None seen	
Spodoptera litura	Chalcidoidea sp.	parasite of egg
Tired to establish	Chalcidoidea sp.	parasite of larva
	Tachinidae sp.	parasite of larva

^{*} Number refers to catalogue number at Wau Ecology Institute.

ive from time to time but generally stayed at tolerable levels especially on otherwise healthy crops. This group contained three sap-suckers (Riptortus annulicornis, Nezara viridula and Platypeltocoris similis), a fruit boring caterpillar (Heliothis armigera), a leaf-mining caterpillar (Leucoptera sp.), an army worm (Spodoptera litura), a leaf-eating beetle

(Cassena papuana) and 3 taro beetles (Papuana spp.). If certain legumes were grown for their ripe beans rather than for their green pods, then Riptortus annulicornis would become a Group I pest. Table 4 lists the predators, parasites and pathogens found to attack Group II pests.

Group III pests were those which



The first step in making a contour mound is to dig a trench.

The coffee pulp is covered with soil to make the mound.

Coffee pulp or some other sort of compost material is spread along the bottom of the trench.

never rose to destructive levels. This was the largest group, containing 215 pest species out of a total of 228 found in the garden (94%). Some of these pests were only ever seen once in the garden while others were always present on certain crops. Fifty six predators and seventy parasites were found to attack these pests. Group III species are considered likely to remain harmless as long as the agricultural system they live in is not disturbed.

IMPROVING NATURAL CONTROL

It is clear that there is room for some improvement in the level of natural control operating against Group I and II pest species. This improvement could be brought about by introducing new predators, parasites and pathogens into the system or by increasing the numbers of those already present. This is called biological control.

All of the Group I pests and most of those in Group II are destructive in cash crops as well as in gardens in Papua New Guinea. Any future increase in the level of their biological control would therefore benefit both types of agriculture. Attempts have already been made to improve biological control of Plutella xylostella and Nezara viridula from Group I, and work is in progress on other species.

The best targets for further efforts at increased biological control are the pests of staple and high protein crops, especially since there are few alternatives available in these categories to replace heavily attacked crop species. Thus the taro bettle (Papuana sp.), the mirid sap-sucker of yams (Platypeltocoris similis), both staple crop pests, and legume pests such as the bean fly

(Ophiomyia phaseoli), the wingedbean blotch miner (Leucoptera sp.) and the pod sucking bug (Riptortus annulicornis) appear to be the most suitable choices for future work in this direction.

This is a dill flower. Dill is grown among the crops in the garden because it is good at attracting parasites of insect pests.

CONCLUSION

If the shifting cultivator is to successfully become a site-specific subsistance gardener, fertilization from the application of large amounts of compost, careful attention to improved biological control and the use of pest resistant crop species will be important factors.

ACKNOWLEDGEMENTS

This work would not have been possible without the cooperation of entomologists at the Commonwealth Institute of Entomology, London, England; the Department of Primary Industry, P.N.G.; the C.S.I.R.O. Screw Worm Fly Laboratory, Port Moresby, P.N.G. and the Biolog-

ical Department, Tokyo Metropolitan University who kindly determined insect specimens. Dr. Gressitt of Wau Ecology Institute, P.N.G. also reviewed this paper and provided valuable critical comment. Funds, staff, and materials have been variously provided by International Voluntary Services, Inc., Washington, D.C.; Wau Ecology Institute; The United Nations University, Tokyo, Japan, and New Zealand Foreign Aid.

FURTHER READING

- Gagne, W.C. (1977). Entomological investigations of agrosilviculture using the composted countour mound method in Papua New Guinea. Science in New Guinea. 5(2):85-101.
- Kaffka, S. (1976). The French intensive system of gardening. In: Small scale intensive food production. Report of a workshop on improving the nutrition of the most economically disadvantaged families. League for International Food Education, Santa Barbara, California. pp.24-31.
- Jeavons, J. (1976). Quantitative research on the French intensive/biodynamic method. In: Small scale intensive food production. Report of a workshop on

- improving the nutrition of the most economically disadvantaged families. League for International Food Education, Santa Barbara, California. pp. 32-38.
- Robbins, R.G. (1960). The anthropogenic grasslands of Papua and New Guinea. In: Proceedings UNESCO symposium on impact of man on humid tropical vegetation. New Guinea. pp. 313-329.
- Robinson, M.H. and Robinson, B. A. (1974). A census of web-building spiders in a coffee plantation at Wau, New Guinea, and an assessment of their insecticidal effect. *Tropical Ecology* 15(182):95-107.
- Scott, G.A.J. (1977). The importance of old-field succession. Biomass increments to shifting cultivation. Great Plains-Rocky Mountain Geographical Journal 4:124-130.
- Street, J.M. (1966). Grassland on the Highland fringe in New Guinea: localization, origin, effects on soil, composition. Capricornia 3:9-12.
- Walker, D. (1966). Vegetation of the Lake Ipea region, New Guinea highlands-primary forest, grassland and "garden".

 Journal of Ecology 54:503-533.