

PESTS AND DISEASES OF SHADE TREES AND THEIR RELATION TO COCOA IN PAPUA NEW GUINEA

S. Laup¹

ABSTRACT

*In the 1950s, most of Papua New Guinea's cocoa was grown either under coconuts or a leguminous shade, *Leucaena leucocephala* (Lam.). During the 1960s, increasing problems with pests of *Leucaena* transferring to the cocoa resulted in a gradual replacement of this shade with an alternative legume; *Gliricidia sepium* (Jacq.). Currently, *Gliricidia* is the preferred permanent shade for establishing cocoa where coconuts are not grown. Pests and other problems with *Gliricidia* are discussed and the recent problems with establishing high yielding hybrid coconuts as permanent shade are highlighted.*

Key words: *Pod rot, vascular dieback, longicorns, mirids, pantorhytes, scolytlids, shade management.*

INTRODUCTION

Cocoa (*Theobroma cacao* L.) is native to South America where it is found as an under-storey tree of dense tropical rain-forest (Wood 1985). It is therefore adapted to grow under heavy shade, but like any other plant, still requires adequate light for photosynthesis. German settlers in 1905, introduced cocoa into Papua New Guinea (PNG) all of which were the Trinitario type (Green 1938, Moxon 1983).

Interplanting of cocoa with coconut was established in the 1920s (Green 1938, Gorringe 1966). Shade trials in the early 1950s looked at the major potential shade types, of which *Leucaena leucocephala* (Lam.) de Wit, and *Cocos nucifera* (L.) were selected as agronomically the most satisfactory for local conditions (Byrne 1971).

Various problems relating to shade type, shade density, incidence of pests and diseases resulted in alternative shades such as *Gliricidia sepium* (Jacq.) to be considered, and these have been recently reviewed (Smith 1985).

Recommendations on shade requirements for cocoa were formulated, following Smith's 1985 review (Smith 1985, Moxon 1992 a). Coconut

shade, particularly the high yielding hybrid variety was recommended as permanent shade for cocoa with *Gliricidia* as the temporary shade.

This review concentrates on the history of changes in shade species and touches on particular pests and diseases presently categorised to be of major economic importance in the cocoa industry within Papua New Guinea (Anon. 1992, Moxon 1992 a). Points are also raised on the present problems of shade density requirements and types of positive or negative associations within the shade, pest and disease complex. Reference is made to present pest and disease control recommendations which are diametrically opposed to each other (Bailey 1979, Smith 1981 a, Smith 1981 b, Moxon 1983).

HISTORY OF SHADE REPLACEMENT

The initial recommendation for a cocoa shade tree in the 1950s was *L. leucocephala* based on Green's work (1938). Problems of insect pests and to a lesser extent proliferating seed production (Urquhart 1961), which were difficult to eradicate, resulted in preference for the agronomically more suitable *G. sepium* in the Oro Province during the early 1970s (Baker 1972).

L. leucocephala has now been further reduced in priority as a shade for cocoa with the arrival in

¹ PNG Cocoa and Coconut Research Institute, P.O. Box 1846, Rabaul, ENBP, Papua New Guinea.

1986 of a South American Psyllid pest of *Leucaena*, *Heteropsylla cubana* Crawford (Hem: Psyllidae) (Moxon 1986, Arura 1989). Feeding of the psyllid on *Leucaena* can cause complete defoliation leading to death of the tree and has been observed to devastate shade in cocoa plantations. A predatory ladybird *Curinus coeruleus* (Muls.) (Col: Coccinellidae) was introduced and tested in quarantine for control of the Psyllid but not released due to its wide host preference (Moxon 1986).

A number of leguminous shade species were studied during the 1930s, particularly as temporary shade species (Green 1938, Byrne 1971). These include *Crotalaria anagyroides* Kunth; *Tephrosia candida* (Roxb.), *Tephrosia vogelii* Hook. and *Flemingia congesta* (Roxb.).

C. anagyroides and the two *Tephrosia* species were susceptible to pink disease (Smith 1981 a). *F. congesta* was not recommended because it was found to be an alternative host of the mirid *Helpeltis clavifer* (Walker) (Hem: Miridae). It was also hard to remove after permanent shade was established. Other shades which were considered for permanent shade include species of *Albizia*, *Casuarina* and *Erythrina* (Henderson 1954, Smith 1985).

Gliricidia shade has been the recommended shade since 1980 in areas known to have outbreaks of pests feeding on *Leucaena* (Moxon 1983). However increasing high management costs in regulating such a vigorous growing species, resulted in *Gliricidia* being recommended only as a temporary shade for cocoa establishment, with coconut, as the permanent shade (Sitapai 1983).

In recommending coconuts, preference was given to high yielding hybrid varieties. The cross between the Malaysian Red Dwarf (MRD) and Rennel Island Tall (RIT) from the Solomon Islands was evaluated (Brook 1985).

A greater economic return per unit area could be obtained from this intercrop establishment (Sitapai 1983, Brook 1985). Catastrophic pest damage on the hybrid coconut particularly in the Islands Region by the indigenous Rhinoceros beetles, *Scapanes australis* (Boisd.) (Col: Dynastidae) and the Black Palm Weevils, *Rhynchophorus bilineatus* (Montrouzier) (Col:

Curculionidae) has halted the distribution of this hybrid throughout Papua New Guinea and led to the closing of both government and commercial hybrid coconut production centres (Woruba 1987, Ovasuru 1990). The Black Palm Weevil usually enters the coconut via damage caused by rhinoceros beetles, either *S. australis* or *Oryctes rhinoceros*. *R. bilineatus* lays its eggs in the damaged tissue and its larvae destroy the apical region resulting in the death of the coconut. The initial approach to controlling the rhinoceros beetle pests involved routine checks and treatment with lindane (gamma BHC) granules to frond axils of young palms up to five years old (Smith 1981 a, Morin 1992).

A recent and more promising approach is the use of a pheromone identified for the black palm weevil. The compound is a 4-methyl-5 - hydroxynonane (Oehlschlager et al. 1992). After identification of the specific isomers involved in the compound, it may be possible to use it as a control measure as well as for monitoring the populations of *R. bilineatus*.

Due to the continuing pest problems on *Leucaena* and coconut the high management *Gliricidia* shade is now being used both as a temporary and permanent shade.

GENERAL SHADE REQUIREMENTS OF COCOA

Shade trees are required to act as a buffer against change in the cocoa canopy. This would act as a lateral protection, as a windbreak, and overhead shading to control the amount of solar radiation and humidity. Shade requirement usually diminishes as the cocoa tree grows older and forms an interlocking canopy. Both the shade trees and cover crop can be used to reduce competitive weeds and the latter, to reduce soil erosion (Wessel 1985). Shade trees also affect temperature and relative humidity around the plant which in turn affects transpiration (Wessel 1985).

Generally cocoa requires shade throughout its life but shade is more important in the first three to five years than when the trees are mature and achieve a closed canopy. Yield has been stated, to some extent, to be inversely proportional to shade density (Smith 1985). Charles (1961)

also showed that there was a clear negative correlation between yield and shade density.

Height of the shade tree and the distance between cocoa canopy with shade canopy has a strong influence on the type and severity of insect pests and incidence of diseases in a cocoa block in PNG (Smith 1985). Pest problems on cocoa are far fewer when cocoa is grown under the tall coconut shade than the relatively low *Leucaena* and *Gliricidia* shade trees, though the precise reasons for this are unknown. Urquhart (1961) also stated that there is no evidence of competition between cocoa and coconut when intercropped at optimum spacing.

PESTS AND DISEASES OF IMPORTANCE TO PNG COCOA

Over 300 insects species (Szent-Ivany 1961, 1963) and over 47 diseases (Shaw 1965) have been recorded on cocoa in Papua New Guinea. However, only about 10 pests (Moxon 1992 a) and 4 diseases (Anon.1992) can be categorised as important economically. Important pests include defoliating caterpillars (Table 1), Mirids, Trunk Longicorns, the cocoa web worm *Pansepta* and *Pantorhytes* (Table 3). The diseases include, Vascular Streak Dieback (VSD), *Phytophthora palmivora* (Pod rot, stem canker and seedling blight), Pink diseases (Table 3) and root diseases (Table 3).

MAJOR PESTS AND DISEASES OF SHADE TREES

The major pests of *Leucaena* are the *Leucaena* Psyllid, *H. cubana* (Moxon 1986, Arura 1989) (Table 2) and the defoliating caterpillar, *Tiracola plagiata* Walker (Lep. Noctuidae) (Catley 1962, Moxon 1992 a). Major pests of *Gliricidia* are the grey weevils of which only the biology, ecology and control of *Hypotactus ruralis* (Col: Curculionidae) is clearly understood (Moxon 1983, 1992 b). Major pests of coconuts are the Rhinoceros beetles and the Black Palm Weevils and on restricted localities *Sexava* and *Promocotheca* (Bedford 1976, Ismay & Dori 1985, Ovasuru 1990, Morin 1991 and Woruba 1987) (Table 2). Major disease outbreaks are

not common on any of the shade species in Papua New Guinea (Table 1 & 2) though root rots such as *Phellinus noxius* can be an occasional local problem.

ASSOCIATIONS WITHIN THE INSECT, PATHOGEN AND SHADE COMPLEX

The fluctuation in the pest status of a number of the insects recorded and often not categorised as important, seems to have been partly influenced by the species of shade tree and the shade densities involved.

Mirids such as *H. clavifer* and *Pseudodoniella* spp. (Hem: Miridae) become a problem when there is inadequate shade (Smith 1981 a) (Table 3). Too much shade removal promotes water shoot production which increases mirid feeding.

H. clavifer and *Pantorhytes* are positively associated with cocoa grown under *Leucaena* or without shade but negatively associated with cocoa grown under coconut shade (Room & Smith 1975). It has been observed (Baker 1972, Moxon 1983) that the crazy ant *Anoplolepis longipes* (Jerdon) (Hym: Formicidae) and the arboreal kurakum ant *Oecophylla smaragdina* (F) (Hym: Formicidae) eliminates *Pantorhytes* from the cocoa under coconut shade. Smith (1985) also refers to negative associations between ants and *H. clavifer*. *Pantorhytes* and mirids have remained the most important pest of cocoa since the 1950s (Szent-Ivany 1961, Moxon 1992 a).

Populations of crazy ants, *A. longipes*, are known to be unstable (Room & Smith 1975) but may persist longer arboreally due to the presence of honey producing homopterans such as mealybugs and scab insects often abundant on *Gliricidia* shade tree. Sometimes efficient tending of *Coccids* results in unusually high populations of mealybugs such as *Planococcus pacificus* (Hem: Pseudococcidae) which sometimes may be directly injurious to the cocoa tree and reduce photosynthesis from sooty mould (Lewis et al. 1976). The crazy ants then harass *Pantorhytes* and mirids on the cocoa tree. In some areas this beneficial association has been disturbed by improper use of insecticides. The Kurakum ant, *O. smaragdina* is negatively associated with the coconut *Amblypelta cocophaga*

Table 1. A Lists of pests and diseases of major shade trees and of which cocoa is also a host.

Shade Species	Pest / Disease spp.	Order: Family	Author
<i>Leucaena</i> sp.	Pests <i>Ectropis sabulosa</i> Warren <i>Hyposidra talaca</i> Walker <i>Tiracola plagiata</i> Walker <i>Ferrisia virgata</i> (Cockerell)	Lep: Geometridae Lep: Geometridae Lep: Noctuidae Hem: Pseudococcidae	Smee 1963 Smee 1963 Catley 1962 Szent-Ivany & Catley 1960
	<i>Planococcus citri</i> (Risso) <i>Neotermes papuana</i> Desuus	Hem: Pseudococcidae	Szent-Ivany 1956
	Diseases <i>Phytophthora</i> <i>palmivora</i> (Butler) Butler <i>Corticium salmonicolour</i> Berkley & Broom <i>Phellinus (Formes)</i> <i>noxious</i> (Corner)		Newhook & Jackson 1977 Shaw 1963 Thrower 1965
<i>Gliricidia</i> sp.	Pests <i>Ceroplastes chiton</i> Green <i>Neotermes</i> sp. <i>Hypotactus ruralis</i> <i>Paractus</i> sp. <i>Cyphopus</i> sp. <i>Oribius</i> sp.	Hem: Pseudococcidae Isop: Kalotermitidae Col: Curculionidae Col: Curculionidae Col: Curculionidae Col: Curculionidae	Shah 1976 Smee 1963 Moxon 1992 a Moxon 1992 a Moxon 1992 a Moxon 1992 a
<i>Cocos nucifera</i>	Diseases <i>Phytophthora</i> <i>palmivora</i> (Butler) Butler <i>Rigidoporus (Formes)</i> <i>lignosus</i>		Muthappa 1987 Shaw 1965

Table 2. Major pests of recommended shade trees.

Shade Species	Pest Species	Order: Family/Subfamily	Author
<i>Leucaena leucocephala</i>	<i>Heteropsylla cubana</i> (Crawford)	Hem: Psyllidae,	Arura 1989
	<i>Tiracola plagiata</i> Walker	Lep: Noctuidae	Catley 1962
<i>Gliricidia sepium</i>	<i>Hypotactus ruralis</i> (Fst.)	Col: Curculionidae	Moxon 1992 a
<i>Cocos nucifera</i>	<i>Scapanes australis</i> (Boisduval)	Col: Dynastidae	Bedford 1976
	<i>Oryctes rhinoceros</i> Linnaeus	Col: Dynastidae	Bedford 1976
	<i>Rynchophorus bilineatus</i> (Montrouzier)	Col: Curculionidae	Morin 1991
	<i>Sexava Wilemse</i>	Orth: Tettigoniidae	Morin 1991
	<i>Promecotheca papuana</i> Csiki	Col: Hispinae	Ismay & Dori 1985

China which causes some degree of premature nutfall (Stapley 1971).

The establishment of cover crops such as *Pueraria* has been observed to improve the foraging of *Oceophylla* on coconut shade (Stapley 1971).

Outbreaks of the defoliating caterpillar *Tiracola plagiata* Walker (Lep: Noctuidae) (Catley 1962, Dun 1967) on cocoa in the Oro Province in blocks under *Leucaena* shade resulted in a shift to rubber, coconut, *Erythrina* and thin forest as shade. Consequently *T. plagiata* damage to cocoa decreased due to the reduced use of *Leucaena* as shade. *Achaea janata* (Lep: Noctuidae) (Room & Smith 1975) on the other hand increased as a result of *Leucaena* shade removal.

Cocoa planted under coconut, rubber and bush remain free from serious infestations of both *T. plagiata* and *A. janata* (Anon. 1968).

Glenea sp. (Col: Cerambycidae) becomes a prob-

lem when there is too much shade (Smith 1981 a) (Table 3). Heavy shade also results in growth of high jorquette on the seedling (Dennis & Keane 1992).

Grey weevil such as *Hypotactus ruralis* (Fst.) (Col: Curculionidae) retard growth and deform the growing point of young cocoa seedlings, and sometimes devastate young *Gliricidia* shade (Moxon 1992 b). Grey weevil pests are problems on cocoa throughout the country (Moxon 1983).

Pansepta teleturga Meyrick (Lep: Xylorictidae) is a problem when there is inadequate shading and becomes severe in areas of complete shade removal (Byrne 1971).

The giant termites *Neoterme* sp. (Isop: Kalotermitidae) build nests in stumps of cocoa and *Leucaena* shade trees from where a New Ireland species invades adjacent cocoa trees through the root system (Anon. 1965). The species *N. papuana* Desnus commonly invades through dead wood of cocoa tree where they tunnel into the green timber (Smith 1981, Moxon 1992 a).

Scolytid beetles have been associated with bark canker on cocoa in Papua New Guinea (Prior & Smith 1981). Thirteen species have been recorded in Papua New Guinea (Anon. 1983, Ismay & Dori 1985) of which the genera *Xyleborus* and *Xylosandrus* are most common. The presence of weeds or heavy shade may also increase the attack of the Scolytid beetles (Entwistle 1972). Weeds and cover crops however may sometimes act as a barrier to the flightless insects such as *Pantorhytes* and grey weevils.

Vascular Streak Dieback, *Phytophthora* Pod Rot (Ppr), Pink (bark) and root diseases (Table 1 & 2) are most damaging in overshaded conditions (Keane & Turner 1972, Thorold 1975, Dennis & Keane 1992).

General recommendations on the management of cocoa diseases include the use of light to moderate shade levels (Anon. 1992).

Light shade creates drier conditions which reduce the number of pods lost to Ppr and increases flowering. It also creates low humidity, increases aeration which simultaneously reduces sporulation of Ppr. The same light shade condition slows down and delays the onset of VSD disease epidemic and reduces spread and incidence of Pink disease (Anon. 1992, Dennis & Keane 1992) (Table 3). More light penetration into the canopy encourages vegetative growth which improves tolerance to VSD (Anon. 1992).

Pink disease can use both *Leucaena* and *Gliricidia* as alternative hosts (Anon. 1992).

Root diseases (Shaw 1965, Anon. 1992) invade dead shade stumps and most commonly provide the source of inoculum to adjacent cocoa trees via the root systems though aerial infection on stumps is also possible.

Generally, good management of shade in a cocoa block will reduce conditions suitable for disease spread and establishment (Anon. 1992).

Shade types and density affect cocoa pollinators. Planted shade seems to be less favourable to pollinating midges than thin jungle. Bees are more frequently associated with cocoa flowers in the sun on the edge of blocks and midges prefer heavy shade (Young 1982).

COMPLETE SHADE REMOVAL AND SPACING

Complete shade removal may increase the cocoa yield (Charles 1961, Wessel 1985) and reduce some of the pests and diseases. However *Helopeltis*, *Pantorhytes* and *Pansepta* become serious problems (Entwistle 1972). In Malaysia, Lim (1978) reported that complete shade removal excepting around the block boundaries increases mirids, thrips and defoliators.

The yield increase is difficult to maintain over a long period because of the imbalance between available nutrients in the soil and the rate of photosynthesis (Charles 1961). Fertilizer input to maintain health and yield of the tree will be laborious and costly. Complete shade removal therefore shortens the economic life of the tree, creating a condition which causes premature decline in yield (Wessel 1985).

In Papua New Guinea yield differences between 17 and 30% were in favour of the unshaded plots, in October and September 1992 (Anon., in press). It is suggested that the difference may have been due to less Ppr in unshaded plots and competition for nutrient and light between the cocoa and shade trees in the shaded plots.

Spacing of cocoa and shade trees has also considerable influence on the effect of certain pests and diseases (Byrne 1971). The light environment of cocoa can be modified by the standard planting of shade trees especially coconuts in rows along an East-West direction for the maximum use of sunlight in the shaded condition (Jayasuriya 1987).

In the Papua New Guinea situation, it is essential that some shade should be used. Without shade weeds become a problem particularly if the canopy is not closed. Competition for nutrients with the weeds occurs and the grey weevil population will increase if grasses are established. More regrowth of water shoots attracts mirids and enables their number to increase rapidly.

Complete shade removal will result in a greater input into the management and control of pests and diseases, and shorten the economic life of a cocoa tree.

Table 3. Shade density recommendations for the control of pests and diseases.

Pest Species	Over-shade	Light-shade	No-shade	Author
TRUNK LONGICORNS				
<i>Glenea aluensis</i>	-	+	++	Smith 1983, 1981 a
Gahan				
<i>Glenea elegans</i>	-	+	++	Smith 1983, 1981 a
Oliver				
MIRIDS				
<i>Helopeltis clavifer</i> (Walker)	++	-	--	Smith 1981 a
<i>Pseudodoniella</i> <i>laensis</i> Miller	+	+	-	Smith 1981 a
<i>Pseudodoniella</i> <i>pacifica</i> China and Carvalho	+	+	-	Smith 1981 a
PANTORHYTES				
<i>Pantorhytes</i> sp.	++	--	-	Smith 1981 a
PANSEPTA				
<i>Pansepta teleturga</i> Meyrick	++	--	-	Byrne 1971
SCOLYTIDS				
<i>Xyleborus</i> sp.	-	+	++	Entwistle 1972
<i>Xylosandrus</i> sp.	-	++	+	Entwistle 1972
Diseases				
POD ROT				
<i>Phtophora palmivora</i> (Butler) Butler	--	++	+	Anon. 1992
VSD				
<i>Oncobasidium</i> <i>theobromae</i>	-	--	+	Dennis & Keane 1992
Talbot & Keane				
PINK DISEASE				
<i>Corticium</i> <i>salmonicolour</i>	-	+	+	Anon. 1992
Berkley & Broome				

- Not recommended - problems will arise

-- Worse problems will arise

+ Recommended

++ Better than ideal

Present control measures of pests and diseases are conflicting. Recommendations for control of the mirid, *Pansepta*, *Pantorhytes* and sometimes Scolytid beetle borers are diametrically opposed to control of Longicorns, Ppr, Pink disease and VSD.

VSD is a problem when the shade is heavy and or nil shade which however will increase weed problem but on the other hand accelerates flowering. Pollinators prefer heavy shade as opposed to thin shade.

CONCLUSIONS

Establishment of light shade will simultaneously reduce incidence of Ppr, Pink disease and reduce and delay the onset of VSD disease epidemics. It will also reduce Longicorn and scolytid beetle populations. Light shade however will simultaneously encourage the build up of populations of *H. clavifer*, *A. janata*, *Pantorhytes* and *Pansepta*.

Leucaena shade is a host for *Pantorhytes*, three species of defoliating caterpillars, and is an alternate host of Pink disease, root rots and termites. *Leucaena* produces many seeds which readily germinate and are difficult to eradicate. The recent arrival of the *Leucaena* psyllid which severely damages and can kill the trees, further reduces its value as a shade.

Gliricidia is a vigorous growing plant that requires regular pruning with high management costs. In the young, i.e. establishment phase *Gliricidia* is attractive to adult grey weevil, termites and is an alternative host of Pink disease. However it harbours homopterans that provide a food source for the Crazy ant which has been beneficial against important cocoa pests such as mirids and *Pantorhytes*.

Coconut shade, particularly the hybrid variety gives more return per unit area when intercropped with cocoa and as a tall shade produces conditions unsuitable for a number of cocoa pests and diseases.

Complete shade removal, although causing a temporary increase in yield, is not an ideal long term economic practice. A greater input is also required in managing and controlling disease

and pest problems.

The predatory ant, *Oecophylla* favours coconuts for establishing its leaf nests and affects beneficially both cocoa and coconut pests. Severe damage by rhinoceros beetles and Black Palm Weevils on coconut shade has halted continued planting and distribution of hybrid coconut seedlings to farmers. A coconut breeding programme is currently engaged in producing and evaluating superior coconut hybrids from local materials. These materials may have some degree of resistance or tolerance to the indigenous *Scapanes* and *Rhynchophorus* beetles. Some farmers are therefore using *Gliricidia* as temporary and permanent shade while some are using existing local tall coconuts as permanent shade.

To simultaneously control major pests and diseases, critical shade levels will have to be established, with a consideration of agronomic factors as well as other aspects of the cocoa ecosystem, and farming practices.

In Papua New Guinea, this has led to conflicting recommendations which are further complicated by the range of environments under which cocoa is grown with local fauna of pests and diseases. However coconut would appear to be the most acceptable permanent shade with *Gliricidia* as a temporary shade. Loss and damage to coconuts, both hybrid and local tails by debilitating rhinoceros beetles and Black Palm Weevils remains a serious constraints in areas where beetle damage is high. Until effective control measure for the beetles are developed, coconuts, particularly the high yielding variety, cannot be recommended as a permanent shade for many areas of Papua New Guinea.

ACKNOWLEDGEMENTS

This paper is published by permission of the Board of the Papua New Guinea Cocoa and Coconut Research Institute. I am grateful to Mr R.N.B. Prior and Dr J. Dennis for commenting on the manuscript.

REFERENCES

ANON. (1965). Annual Report 1961-1963. pp 137-151. Department of Agriculture, Stock and Fisheries. Territory of Papua and New Guinea.

ANON. (1983). Crop Insect Survey of Papua New Guinea. From July 1st 1969 to December 31st 1978. *Papua New Guinea Agricultural Journal* 32(1-4): 1-120.

ANON. (1992). *Cocoa-Information Bulletins*. PNG Cocoa and Coconut Research Institute. Printed by CQIP, 62 pp.

ANON. (in Press). Cocoa and Coconut Research Review 92/93, Cocoa and Coconut Research Institute, Papua New Guinea.

ARURA, M. (1989). *Leucaena Pest-Psylid*. D.A.L., Low-lands farming systems team Occassional Paper No.1. Bubia Agricultural Research Centre, Papua New Guinea.

BAILEY, P. (1979). Cocoa webworm: A pest of young cocoa trees. *Harvest* 5: 1, D.A.L., Papua New Guinea.

BAKER, G.L. (1972). The role of *Anopolepis longipes* Jerdon (Hymenoptera: Formicidae) in the entomology of cocoa in the Northern District of Papua New Guinea. *Abstracts of the 14th International Congress of Entomology*, Canberra.

BEDFORD, G.O. (1976). Observations on the biology and ecology of *Oryctes rhinoceros* and *Scapanes australis*: Pests of coconut palms in Melanesia. *Journal of Australian Entomological Society* 15: 241-51.

BROOKS, R.M. (1985). Early Yield from Dwarf x Tall coconut Experiment. *Harvest* 11: 2.

BYRNE, P.N. (1971). Shade, Spacing and Fertilising of cocoa in Papua New Guinea. *Harvest* 1(4): 129-138.

CATLEY, A. (1962). *Tiracola plagiata* Walk. (Lepidoptera: Noctuidae). A serious pest of cocoa in Papua New Guinea. *Papua and New Guinea Agricultural Journal* 15: 15-22.

CHARLES, A.E. (1961). Spacing and Shade trials with cocoa. *Papua and New Guinea Agricultural Journal* 14(1): 1-15.

DENNIS, J.J.C. and KEANE, P.J. (1992). Management Strategies for Control of Vascular Streak Dieback of Cocoa. *Cocoa Growers Bulletin* 45: 31-44.

DUN, G.S. (1967). Cocoa flush Defoliating Caterpillar in Papua and New Guinea. *Papua New Guinea Agricultural Journal* 19(2): 67-71.

ENTWISTLE, P.F. (1972). Pests of Cocoa. Longman Group Limited, Great Britain 779 pp.

GORRINGE, K.R. (1966). The Tolai Cocoa Project. *Cocoa Growers Bulletin* No. 6.

GREEN, E.C.D. (1938). Cocoa Cultivation and its application to the Mandated Territory of New Guinea. *New Guinea Agricultural Gazette* 6(4): 163.

HENDERSON, F.C. (1954). Cocoa is a crop for the Owner-Manager in Papua New Guinea. *The Papua New Guinea Agricultural Journal* 9 (2): 45-74.

ISMAY, J.W. and DORI, F.M. (1985). Crop Insect Survey of Papua New Guinea, from 1st January 1978 to 31 December, 1981. *Research Bulletin* No. 38, DAL, Papua New Guinea.

JAYASURIYA, U. (1987). Intercropping Hybrid Coconut with Cocoa, D.A.L. *Harvest* 12(4): 8-11.

KEANE, P.J. and TURNER P.D. (1972). Vascular-Streak Dieback of Cocoa in West Malaysia. pp 50-57. *Proceedings of Conference on Cocoa and Coconut at Malaysia held in Kuala Lumpur 25-27 November 1971* (Ed. Wastie R.L. & Earp D.A.).

LEWIS, T., CHERRET, J.M., HAINES I.H., HAINES J.B. and MATHIAS P.L. (1976). The crazy ant (*Anopolepis longipes* Jerd). (Hymenoptera: Formicidae) in Seychelles, and its chemical control. *Bulletin of Entomological Research* 66: 97-111.

LIM, D.H.K. (1978). New Development in Shade for hybrid cocoa in Sabah, Paper No. 7. *International Conference on cocoa and coconut*, Kuala Lumpur.

MORIN, J.P. (1991). The significance of coconut pests in Vanuatu, Papua New Guinea and the Solomon Islands: *Oryctes, Scapanes, Rhynchophorus, Sexava*. IRHO Report of CIRAD/IRHO Entomologist IRHO Doc 2348. Republic of Vanuatu, Ministry of Agriculture, Forestry and Fisheries.

MOXON, J.E. (1983). Review of the Research Requirement for cocoa in Papua New Guinea. D.A.L. *Technical Report* 83/7, Papua New Guinea 17 pp.

MOXON, J.E. (1986). Psyllid Pest of *Leucaena*. *Harvest* 12(1): 19-22.

MOXON, J.E. (1992 a). Insect Pests of Cocoa in Papua New Guinea. Importance and Control, L.A.E.S. *Technical Bulletin* 192, D.A.L., Papua New Guinea.

MOXON, J.E. (1992 b). Grey Weevil Pests of Cocoa L.A.E.S. *Information Bulletin* No. 48, D.A.L., Papua New Guinea.

MUTHAPPA, B.N. (1987). Record of Micro-organisms in Papua New Guinea 1977-1986. *Research Bulletin* No. 43, D.A.L., Papua New Guinea.

NEWHOOK, F.J. and JACKSON G.V.H. (1977). *Phytophthora palmivora* in cocoa plantation soils in the Solomon Islands. *Transactions of the British Mycological Society* 69:31-38.

OEHLSCHLAGERA, H.D. PIERCE, JR. B. MORGAN, P.D.G. WIMALARATNE, K.N. SLESSOR, G.G.S. KING, G. GRIES, R. GRIES, J.H. BORDEN, L.F. JIRON, G.M. CHINCHILLA and R. MEXON (1992). Chirality and field testing of Phynchophorol, the aggregation pheromone of the American palm weevil. *Naturwissenschaften*, 79:134-135.

OVASURU, T. (1990). The Early Performance of Four Coconut Hybrid in comparison to Local Tall Ecotypes at three localities in Papua New Guinea. Honours Thesis. Faculty of Agriculture, University of Papua New Guinea, 77 pp.

PRIOR, C. and SMITH E.S.C. (1981). Association of *Phytophthora palmivora* bark canker and insect damage in cocoa in Papua New Guinea. *Annals of Applied Biology* 97:27-30.

ROOM, P.M. and SMITH, E.S.C. (1975). Relative abundance and distribution of insect pests, ants and other components of the cocoa ecosystem in Papua New Guinea. *Journal of Applied Ecology* 12:31-46.

SHAH, S. (1976). Observations on some pests of cocoa in Tawau. pp:119-124. In *Proceedings of the East Malaysia Planters Association, Cocoa-Coconut Seminar*, Tawau, Sabah.

SHAW, D.E. (1965). Plant Pathogens and other micro-organisms in Papua New Guinea. *Research Bulletin* No. 1. D.A.S.F., Port Moresby (1963) 82 pp.

SITAPAI, T. (1983). Planting hybrid cocoa. *Harvest* 9 (3-4): 126-133.

SMEE, L. (1963). Insect pests of *Theobroma cacao* in the Territory of Papua New Guinea: their habit and control. *Papua New Guinea Agricultural Journal* 16: 1-19.

SMITH, E.S.C. (1981a). An integrated control scheme for cocoa pests and diseases in Papua New Guinea. *Tropical Pest Management* 27(3): 351-359.

SMITH, E.S.C. (1981b). Pests of cocoa - Trunk longicorns. *Entomology Bulletin* No. 3. D.A.L., Papua New Guinea.

SMITH, E.S.C. (1985). A review of relationships between shade types and cocoa pest and disease problems in Papua New Guinea. *Papua New Guinea Journal of Agriculture, Forest and Fisheries* 33(3-4): 79-88.

STAPLEY, J.H. (1971). Field studies on the ant complex in relation to premature nutfall of coconut in the Solomon

relation to premature nutfall of coconut in the Solomon Islands. pp. 345-355. In the Proceeding of the Conference on Cocoa and Coconut, Kuala Lumpur, November 1971. (Ed: Wastie R.L. & Earps D.A.).

SZENT-IVANY, J.J.H. (1961). Insect pests of *Theobroma cacao* in the Territory of Papua and New Guinea. *Papua New Guinea Agricultural Journal* 13 (4):127-147.

SZENT-IVANY, J.J.H. (1963). Further Records of Insect Pests of *Theobroma cacao* in the Territory of Papua New Guinea. *Papua and New Guinea Agricultural Journal* 16 (1):37-43.

SZENT-IVANY J.J.H. and CATLEY A. (1960). Host plant and distribution records of some insects in New Guinea and adjacent Islands. *Pacific Insects* 2:255-261.

THOROLD, C.A. (1975). Diseases of Cocoa. Clarendon Press, Oxford. x + 423 pp.

THROWER, L.B. (1965). Parasitism of Cocoa by *Formes noxiis* in Papua New Guinea. *Tropical Agriculture, Trinidad* 42:63-67.

URQUHART, D.H. (1961). Cocoa. 2nd Ed. Tropical Agriculture Series. Longmans, London 293 pp.

WESSEL, M. (1985). Shade and Nutrition. pp. 166-194. In *Cocoa* (Ed. Wood, G.A.R. and Lass R.A.) 4th Ed. Longmans..

WORUBA, M.G. (1978). Activities of coconut works in Papua New Guinea. a country report presented at a working group meeting on Genetic Improvement on palms at Zamboanga Research Centre, Philippines, IBPGR 1978.

YOUNG, A.M. (1982). Effect of shade cover and availability of midge breeding sites on pollinating midge populations and fruit set in two cocoa farms. *Journal of Applied Ecology* 19:47-63.