A DEIGHTONIELLA DISEASE OF SACCHARUM SPECIES.

DOROTHY E. SHAW.*

A LEAF disease called "Veneer Blotch" is reported on Saccharum officinarum, robustum, S. spontaneum and Saccharum p. in Papua, New Guinea, New Britain and he British Solomon Islands Protectorate. The genus Deightoniella is emended to nclude species with amerospores, and the ausal organism of the disease is described as Deightoniella papuana sp. nov.

* * * *

Species of Saccharum (S. officinarum, S. obustum and S. spontaneum) collected in apua, New Guinea, New Britain and the British Solomon Islands Protectorate, have seen found with striking leaf lesions caused by a species of Deightoniella.

The lesions on all hosts are similar, Ithough a little narrower on the narroweaved species, S. spontaneum, than on officinarum and S. robustum. The lesion egins as a small, oval spot, light green to traw coloured, with a distinct thin red-brown order on any part of the lamina. It then ecomes flanked by two longitudinally longated similar lesions, resembling wings, me on each side (Plate 1). Two more vings then appear, flanking the first pair, nd so on until sometimes twelve wings re formed on each side of the oroginal pot, each successive wing usually being arger than the preceding one. One lesion xamined measured 61 cm. long by 1.2 cm. vide. Occasionally the wings on each side re not symmetrical, and very occasionally econdary wings will form parallel to the nain chain. The whole lesion has a beautiful attern, particularly on the upper surface. nd is not unlike a veneer of wood. Upon he death of the leaves the pattern is still iscernible.

On the upper surface each wing is outlined with a thin dark-red border, 0.5-1 mm. wide. The interior of the lesion is at first light green, ater greeny-grey or straw-coloured and finally ight brown.

On the under surface of the lesion, the onidiophores form a dense black pile except in the newly-formed wings at the apex and ase of the lesion. Occasionally conidiophores lso form on the upper surface.

In the field, spores are often found with the conidiophores, although usually detached from them.

They are produced abundantly on the conidiophores, however, if the leaves are kept in a humid atmosphere overnight or longer.

If a common name is required for the disease, "Veneer Blotch" would seem appropriate.

A. Emendation of the genus and description of the species.

On the recommendation of Dr. M. B. Ellis, of the Commonwealth Mycological Institute, Kew, the genus *Deightoniella* is emended to include species with amerospores:—

Deightoniella Hughes emend. D. Shaw .-

Colonies on host: effused, black, velvety. Condiophores arising close together, singly or in small fascicles, simple, straight or twisted, often elongating by successive subglobose apical proliferations. Conidia formed singly as blown-out ends at the apex of the condiophore and each proliferation, o-multiseptate, subhyaline to olivaceous brown or brown, smooth verrucose or echinulate.

Description of the species:

Deightoniella papuana sp. nov.

Coloniae: effusae, atrae. Conidiophores: densa, singulariter oriunda simplicia, tortuosa, continua, basi inflata (6-9u) brunnea supra pallidiora, 39-70 (90) x 6-8u.

Conidia: singula, globosis vel subovoideus, aseptata, minute echinulata, pallide oliveaceo-brunnea, 15-20 x 15-18*u*.

Habitat: in follis vivis Saccharum officinarum L., S. robustum Brandes and Jesweit ex Grassl., S. spontaneum L. and Saccharum sp. (Gramineae), Papua, New Guinea, New Britain, British Solomon Islands Protectorate. Typus T.P.N.G. 1221, Laloki River, Papua, 10.1.57, D. Shaw, Saccharum robustum. Herb. I.M.I. No. 71316.

^{*} Pathologist, Department of Agriculture, Stock and Fisheries, Port Moresby.

conidiophores of Deightoniella papuana form a dense black pile, usually on the under surface of the leaves, although occasionally they form on the upper surface also. They are simple, 39-70 (90) x 6-8u, dark brown, slightly paler above, cylindrical throughout most of their length but tapering slightly at the tip, with twisted growth, either clockwise or anti-clockwise, as described for Deightoniella africana (Hughes, 1952; Ellis, 1957). The number of twists per conidiophore ranges from 8-14. The base is swollen into a bulb, 6-9u wide and is partly immersed in the cell wall of the epidermal cell. The base of the conidiophore connects with the fungal tissue inside the epidermal cell by a

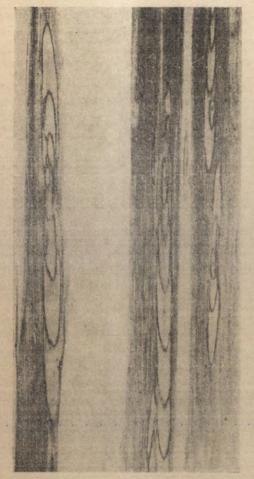


PLATE 1

Compound lesions on leaves of Saccharum robustum.

Note the pattern caused by the development of successive wings beginning initially from the infection court; upper surface (x1).

Conidiophores and conidia, and one conidium still attached to the conidiophore (x350).

narrow hypha about 2-3*u* long. The conidiophores are arranged in more or less straight rows in the cells between the ridges, although some conidiophores issue from the ridge cells themselves; up to four conidiophores were noted issuing from the one cell. The mycelium in the cells is pale olivaceous.

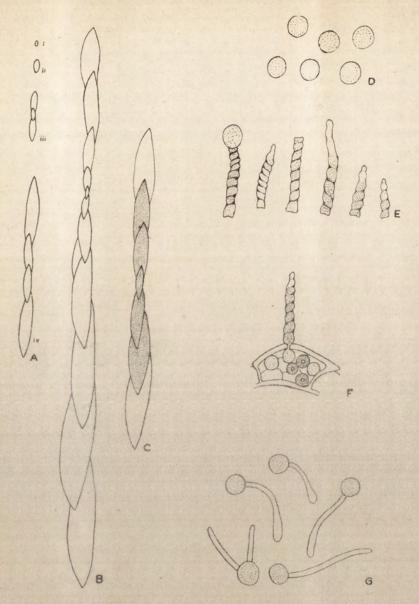
The conidia at maturity are globose to nearly ovoid, aseptate, minutely echinulate, very pale olivaceous brown, 15-20 x 15-18". No basal scar could be detected. They retain their circular shape during germination.

Habitat: on living leaves of Saccharum officinarum L. (chewing cane), S. robustum Brandes and Jesweit ex Grassl, S. spontaneum L. (cane grass) and Saccharum sp. (Gramineae), Papua, New Guinea, New Britain, British Solomon Islands Protectorate. Type T.P.N.G. Accession No. 1221, Laloki River, Papua, 10.1.57, D. Shaw, Saccharum robustum. I.M.I. No. 71316. Another collection, T.P.N.G. Acc. 1967, has been given Herb. I.M.I. 71317.

Collections examined.

Locality.	T.P.N.G. Acc. No.	Collector.
accharum officinarum— Kanosia, Papua Saccharum robustum and	1262	D.S.
robustum types— Laloki River, Papua Keravat River, New Britain Goroka, New Guinea Mount Hagen, New Guinea Brown River, Papua	674, 726, 1221, 1967 802 859 964 1283, 1552,	D.S. D.S. D.S. D.S. D.S. D.S.
Beipa, Papua Tenaru, Guadalcanal, British Solomon Islands Protectorate Arona, New Guinea Aiyura, New Guinea	1678 1329 1411 1529 1845 1850	C. O. Grassl, J. Warner. D.S. D.S.
Samarai, Papua Popondetta, Papua Erap, New Guinea Beipa, Papua Port Moresby, Papua	432, 651 571 452 617 763 1410 1990	A.W. Charles F. Arndt. D.S. D.S. D.S. D.S. D.S.
Saccharum sp.— Mount Hagen, New Guinea	965	D.S.

B. Other aspects of the disease


Germination of spores in water was difficult o obtain-very rarely, in fact, did any germmate at all.. Germination occurred overwight, however, when a piece of the leaf was hdded to the spore suspension. Germination was also obtained overnight when the spores, either dry (having been scraped from the leaf surface with a scalpel) or in a water suspension, were streaked directly on to an agar surface. Germinating spores retained their circular shape, and produced one germ tube, or, more rarely, two, per spore. The germ tubes in water often showed the tendency to end in a small appressorium-like body. Germ tubes on agar surface were often aerial, and, although some reached over 80u in length and branched once, no growth past this has so far been obtained, despite the use of various media held under different conditions. Germination of the spores and growth of the germ tube was slow, whether on agar or in water suspension with leaf fragments.

When surface sterilized pieces of lesions were plated on to agar, either contaminant fungi which produced other spores were obtained, or no mycelium was obtained at all. Conidiophores were also streaked on numerous occasions on to agar, but no growth occurred. This was as expected, because, as Hughes (1952) pointed out, the condiophores are aseptate. When removed from the leaf surface, the condiophores usually break off at the surface, which means that the cytoplasmic connection with the portion in the leaf tissue is broken, so that each detached condiophore is, in fact, a broken cell.

Of the five described species of Deightoniella, only one (D. torulosa) has been obtained in culture. Germination of D. torulosa spores has been obtained, and Ellis (1951) reported that, although the conidia of D. arundinacea (then Napicladium arundinacium) do not germinate readily in tap water, a few conidia did germinate at the apex in four days, each one forming a single germ tube. Neither germination of spores nor growth in culture has been reported for D. africana or the other species.

Ellis (1951, 1957) has reported that infection by *D. arundinacea* is systemic, but this would not seem to be the case with *D. papuana*, where the development of the lesion can be easily traced. Lack of facilities has so far prevented inoculation studies with *D. papuana*.

The hosts of D. papuana have a very varied habitat. They were located in dry Eucalyptus savannah (S. spontaneum, Papua); in grassland dominated by Imperata cylindrica and Themeda australis (S. spontaneum, New Guinea); in streams and on the banks of streams (S. robustum, Papua, New Britain, British Solomon Islands Protectorate); in native gardens in rain forest clearings (S. officinarum, Papua); on sandy beach soil on the coast (S. spontaneum, Papua); all the above being at or within a hundred feet of sea level. In New Guinea, however, the disease was found in great abundance, and with lesions over two feet long, on S. robustum in the valleys of the Highlands, at 5,000 to 6.000 feet.

- A. (i-iv) Series of lesions of Saccharum robustum, showing development of wings; upper surface (x1).
- B. A large compound lesion, with wings; upper surface (x1).
- C. A compound lesion, under surface, showing pile of conidiophores (x1).
- D. Conidia, globular, minutely echinulate (x350).
- E. Conidiophores in various stages of development, showing clockwise and anti-clockwise twists (x350).
- F. Edge cell of leaf of S. spontaneum, showing emergence of conidiophore, the protoplasmic connection, and conidiophore bases (x350).
- G. Germinating conidia in water containing leaf fragment with swelling at tips (x350).

The present known distribution of this lease is Papua, New Guinea, New Britain d the British Solomon Islands Protectorate. The disease is also probably in Netherlands we Guinea. Two of the hosts, Solicinarum and Solomon Islands Protectorate. The disease is also probably in Netherlands we Guinea. Two of the hosts, Solicinarum and Solomon are widely stributed throughout the Indo-Malayan gion, and it will be interesting to note if the lease is recorded in the future on any of the islands west of New Guinea.

No species of Deightoniella has previously en recorded on Saccharum. D. africana lughes, 1952; Ellis, 1957) occurs on perata cylindrica var. africana in Africa, d. D. arundinacea (Hughes, 1952; Ellis, 57, and, as Napicladium arundinaceum, is et al. 1951; Sprague, 1950) occurs on ragmites communis. The other three ecies described by Ellis (1957) are not orded on Gramineae.

The condiophores of *D. papuana* and their ergence from the leaf are very similar to use described for *D. africana*. The spores *D. africana*, however, and of all the other ecies of *Deightoniella*, are septate (from the tother expectation of the septation), whereas those of *D. puana* are aseptate.. Care was taken that a bulbous bases of the condiophores were the mistaken for spores, and that immature the present the possibly had not developed a prum, were not mistaken for mature ones.

So far *D. africana* has not been recorded on *Imperata cylindrica* in the Territory, although this grass is widespread and is one of the dominant species in many areas. *D. arundinacea* has not as yet been recorded on *Phragmites communis*, which is also common in certain areas.

ACKNOWLEDGMENTS.

Grateful acknowledgment is made to Mr. C. O. Grassl and Dr. J. N. Warner for the identification of the hosts and for collection No. 1529; to Messrs. A. W. Charles and F. Arndt for collections No. 432 and 651, and No. 571 respectively; and to Dr. M. B. Ellis, Commonwealth Mycological Institute, Kew, for his advice to emend the generic diagnosis and his help in preparing it.

References.

Ellis, M. B., 1957. "Some species of Deightoniella". Mycological Papers, No. 66, pp. 1-12.

ELLIS, M. B., E. A. ELLIS and J. PAMELA ELLIS, 1951. "British Marsh and Fen Fungi I". Trans. Brit. Mycol. Soc. 34: pp. 147-169.

Hughes, S. J., 1952. "Fungi from the Gold Coast I". Mycol. Papers, 48: pp. 27-29.

Hughs, S. J., 1953. "Some foliacolous Hyphomycetes". Canad. Jour. Bot., 31 (5), pp. 560-576.

Sprague, R., 1950. "Diseases of cereals and grasses in North America". Ronald Press Co., New York.