CHLOROTIC SPOT, A VIRUS DISEASE OF PASSIFLORA FOETIDA IN NEW GUINEA

By R. J. VAN VELSEN *

SUMMARY

S TUDIES on the symptomatology, identity and transmission of passion fruit chlorotic spot virus, a hitherto undescribed virus, are recorded. The virus can be mechanically transmitted to Passiflora foetida, P. quadrangularis L., P. edulis Sims. var. flavicarpa, P. alba Link and Otto., Crotalaria anagyroides H.B. et K., and Nicotiana sylvestris Spegazzini and Comes., but not to Passiflora edulis Sims., nor P. suberosa L.

The thermal inactivation point of the virus lies between 60 and 65 degrees C. for an exposure of 10 minutes; the dilution end point lies between 10⁻⁶ and 10⁻⁷ and longevity in vitro is between 48 and 72 hours at a room temperature of 28 degrees C.

The virus is transmitted in the laboratory by wingless adults of *Aphis gossypii* Glover in a non-persistent manner, and occurs naturally in the field on *Passiflora foetida*, *P. quadrangularis*, and *P. edulis* var. *flavicarpa*.

INTRODUCTION

Virus diseases of the passion vine have been recorded in Australia (Cobb, 1901), Kenya (McDonald, 1937), South Africa (Storey, 1940), England (Bewley, 1923), Sumatra (Palm, 1922) and New Zealand (Chamberlain, 1954).

Species of Passiflora occur throughout the Territory of Papua and New Guinea. P. edulis is mainly grown, sometimes commercially, in the Highlands at Goroka, Kainantu, and Wau. P. quadrangularis, P. edulis var. flavicarpa and P. quadrangularis var. macrocarpa are grown occasionally in backyard gardens at lower levels. P. foetida grows wild in many cleared areas throughout the Territory, but has not been found

at Wau, Goroka or Kainantu where *P. edulis* is grown. Woodiness virus has not been recorded in the Territory of Papua and New Guinea to date, and the following investigations were carried out to determine the host range, identity and method of field transmission of the virus causing a chlorotic spotting on *P. foetida* growing wild at the Lowlands Agricultural Experiment Station at Keravat, New Britain.

Passiflora foetida, P. quadrangularis, and P. edulis var. flavicarpa are found naturally infected in the field with the chlorotic spot virus.

EXPERIMENTAL STUDIES

Throughout the investigations, *P. foetida* was used as the indicator plant unless otherwise stated, and field-infected plants were used as the source of inoculum. Infectious sap was obtained by grinding infected leaves of *P. foetida* in a mortar and straining through muslin. The test plants were inoculated when 21 days old, the filtrate being applied by a cotton pad with the aid of 500 grit carborundum. The plants were maintained in insect-proof cages for 28 days following inoculation, where the air temperature varied from 65 to 93 degrees F.

The test plants listed in Table 1 were inoculated with infectious sap at various ages as indicated. Twenty-eight days after inoculation, the leaves from the test plants above the point of inoculation were removed, ground up and the filtrate inoculated onto P. foetida seedlings. Of the plants tested, only P. foetida, P. alba, P. quadrangularis, P. edulis var. flavicarpa, Crotalaria anagyroides, and Nicotiana sylvestris, are susceptible. It is important to note that Passiflora edulis was not infected in three separate tests.

(Manuscript received 26th September, 1960.)

^{*} Plant Pathologist, Lowlands Agricultural Experiment Station, Keravat, New Britain.

TABLE 1.—THE HOST RANGE OF CHLOROTIC SPOT OF PASSION FRUIT

	Test	Plant.				Reaction.	Proportion of Plants Infected.
Passiflora alba (b)						 Mottle	14/21
P. edulis (b)						 Nil	0/60a
	(b)					 Mottle	13/20
P. foetida (b)						 Chlorotic spot	20/20
P. quadrangularis (b)						 Mottle	15/20
P. suberosa (b)						 Nil	0/20
Cucumis sativus var. "pa						 Nil	0/20
C. melo (b)						 Nil	0/20
Cucurbita moschata (b)					****	 Nil	0/20
C. pepo (b)					****	 Nil	0/20
C. pepo var. medullosa	(b)					 Nil	0/20
C. melopepo (b)						 Nil	0/20
Citrullus vulgaris (b)						 Nil	0/20
Nicotiana tabacum var. "	White	Burley	" (c)			 Nil	0/20
N. glutinosa (c)						 Nil	0/20
N. rustica (c)						 Nil	0/20
N. sylvestris (c)						 Vein clearing	4/20
Lycopersicon esculentum						 Nil	0/20
Petunia bybrida var. " R	losy N	forn "	(c)	****		 Nil	0/20
Solanum melongena (c				****		 Nil	0/20
S. nigrum (c)					****	 Nil	0/20
0 11						 Nil	0/20
Vigna sinensis var. "Co						 Nil	0/20
V. sinensis var. "Black	Eye'	' (d)				 Nil	0/20
Phaseolis vulgaris var.	" Bro	wn Be	auty "	(d)	****	 Nil	0/20
P. vulgaris var. "Pinto	bean	" (d)				 Nil	0/20
P. mungo (d)						 Nil	0/20
Sesbania speciosa (e)					****	 Nil	0/20
Crotalaria anagyroides (b)					 Mosaic	10/20
Stizolobium deeringianun	n (d)					 Nil	0/20
Centrosema pubescens (d)	****	****			 Nil	0/20
Chenopodium amarantico	olor ((c)	****			 Nil	0/20

^{*} In all fractions, the numerator indicates the number of plants developing symptoms, and denominator indicates the number of plants inoculated.

Symptoms Induced by the Virus

Passiflora foetida

In the field, the first three terminal leaves of the vines show no symptoms. The fourth and subsequent leaves, however, bear numerous irregular-shaped yellow spots scattered over the leaf surface, giving the leaves a distinct spotted appearance (Plate A). The leaves are normal in shape and size and the plants are not stunted and flower and set seed normally.

In the laboratory, chlorotic leaf symptoms appear seven to 14 days after inoculation.

Passiflora quadrangularis

The young leaves at the tip of the tendrils on field-infected vines appear healthy, but the third and subsequent leaves show a distinct dark-green/light-green mottle (Plate B). The mature leaves, however, are dark-green and appear normal, although the virus has been isolated from them. The fruit is reduced in size and is slightly malformed.

Leaf symptoms, as described above, appear 14 to 21 days after inoculation in the laboratory.

VOL. 13, NO. 4.—MARCH, 1961

⁺ Seed kindly supplied by the Queensland Department of Agriculture, Brisbane,

a. results of three tests.

b. indicates test plants inoculated when cotyledons present.

c. inoculated when six leaves present.

d. inoculated when first true leaves present.

e. inoculated when seven days old.

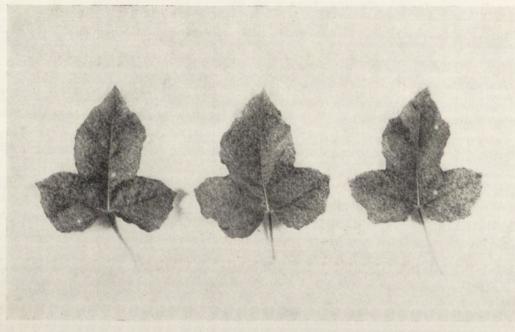


PLATE A .- Leaves from field-infected Passiflora foetida L. showing chlorotic spotting.

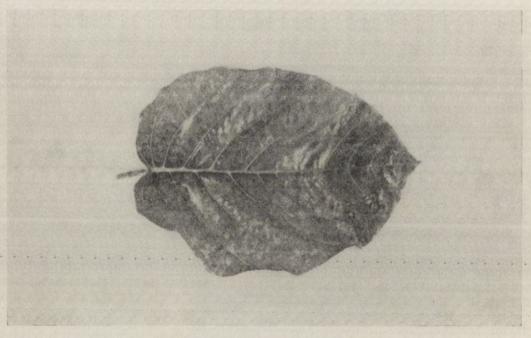


PLATE B.—Leaf from diseased Passiflora quadrangu'aris L. showing mottle symptoms.

PAPUA AND NEW GUINEA AGRICULTURAL JOURNAL

P. edulis var. flavicarpa

The foliar symptoms are similar to those recorded on *P. quadrangularis*. However, infected vines bear normal edible fruits.

P. alba

This species of *Passiflora* has not been found on the Gazelle Peninsula, and thus no field symptoms are available. In laboratory tests, foliar symptoms were recorded seven to nine days following inoculation. The leaves emerging develop a distinct yellow-green mottle, which is not accompanied by vein clearing, wilting of the petioles or curling of the leaves as occurs with woodiness virus (McKnight, 1953). As the diseased leaves mature they become darker and the mottle is less distinct. The leaves are not stunted or malformed. When the plants are pruned heavily, the emerging leaves exhibit a distinct mosaic pattern and the leaves are severely stunted and malformed (Plate C).

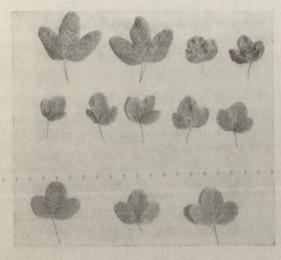


PLATE C.—Leaves from Passissora alba Link & Otto. Top two rows of leaves taken from plants inoculated with chlorotic spot virus, showing mottle and leaf distortion. Bottom row showing healthy leaves.

Crotalaria anagyroides

C. anagyroides develops leaf symptoms seven to 14 days after inoculation. The first leaves emerging after inoculation bear no symptoms, but the following leaves show a light-green mosaic. The plants are slightly stunted, but flower and set seed normally.

Nicotiana sylvestris

A distinct vein clearing appears 40 to 50 days after inoculation. The leaves are reduced in size when compared with healthy leaves (Plate D).

PLATE D.—Nicotiana sylvestris Spegazzini & Comes. Leaf on left from a healthy plant. Leaf on right showing vein clearing and reduction in leaf size following inoculation with passionfruit chlorotic spot virus.

Physical Properties

The usual methods for the determination of the physical properties were used. Passiflora foetida was used throughout as the indicator plant. The dilution end point of the virus lies between 10-6 and 10-7 (Appendix 1), using distilled water as the diluent. The virus is inactivated in extracted sap following a 10-minute exposure at 65 degrees C., but not at 60 degrees C. (Appendix 2). The longevity in vitro of the virus lies between 48 and 72 hours when the solution is kept at room temperature of 28 degrees C. (Appendix 3).

Attempted Seed Transmission

From field observations carried out at Keravat, 45 to 100 per cent of the plants of *Passiflora foetida* showed chlorotic spot symptoms. The possibility of the virus being seed-transmitted was investigated. Seeds were collected from field-infected plants, washed to remove pulp, sorted, counted, and then planted out into sterilized forest soil. The seedlings were kept under observation for eight weeks. Seeds were

also collected from disease-free plants grown in the laboratory. The results as recorded in Appendix 4 illustrate that the virus is not seedtransmitted.

Insect Transmission

A collection was made of insects found feeding on diseased *Passiflora foetida* in the field at Keravat and these were released in the laboratory onto healthy test plants of *P. foetida*. Specimens were kept and were forwarded to Dr. J. J. H. Szent-Ivany for identification. Of the insects tested (Appendix 5), only *Aphis gossypii* was found to transmit the virus.

Further transmission tests using Aphis gossypii as the vector were carried out to determine whether the virus is transmitted in a persistent manner or not. Aphids were collected from laboratory colonies maintained on Cucurbita moschata Duchesne, starved for two hours and then allowed an access feed of 10 minutes on diseased leaves of Passiflora foetida. The aphids were then removed and placed onto healthy plants of Passiflora foetida with the aid of a camel's-hair brush. Single apterous aphids were used. The aphids were then shifted to fresh plants every 24 hours or until they died. The results in Appendix 6 indicate that the virus is transmitted in a non-persistent manner. A further test was carried out in which the access-feeding time was less than 30 seconds. Of the 20 aphids tested, 11 were able to transmit the virus in a test-feeding period of two hours, preceded by an access-feeding period of 30 seconds. Thus, it is evident that the virus is transmitted in a non-persistent manner by Aphids gossypii.

DISCUSSION

The only other virus recorded on Passiflora spp. is passion fruit woodiness, which Magee (1948) states is a strain of cucumber mosaic virus. Passion fruit woodiness readily infects P. edulis. McKnight (1953) was unsuccessful in transmitting passion fruit woodiness to tomato, Datura stramonium L., cucumber, Lupinus mutabilis Sweet, and tobacco. The virus investigated at Keravat could not be transmitted to the above hosts or to P. edulis.

Since no serological tests could be carried out at Keravat, the host range and symptom pattern are used as the critical criteria in identifying the virus. The symptom patterns of the virus on

PAPUA AND NEW GUINEA AGRICULTURAL JOURNAL

Passiflora foetida, P. alba, and P. edulis var. flavicarpa are distinct from those recorded by McKnight induced by passion fruit woodiness. In Appendix 7, a comparison is made between cucumber mosaic (Smith, 1957), passion fruit woodiness (McKnight, 1953) and passion fruit chlorotic spot. From this comparison it is evident that the host range of passion fruit woodiness (McKnight, 1953) is similar to that of passion fruit chlorotic spot where results are available, but it must be noted that the virus is not transmitted to P. edulis or P. suberosa. It is essential to note that passion fruit chlorotic spot differs from cucumber mosaic virus in its host range. Thus, it is not valid to term passion fruit chlorotic spot a strain of cucumber mosaic virus. The mean maximum temperature at which the tests were carried out was 92 degrees F. The author is of the opinion that the virus investigated is distinct from cucumber mosaic and passion fruit woodiness virus and is a new virus hitherto undescribed. It is termed chlorotic spot virus of passion fruit.

ACKNOWLEDGEMENTS

The author wishes to acknowledge that the insect identifications were carried out by Dr. J. H. Szent-Ivany and the photographs are the work of Mr. A. E. Charles.

REFERENCES

Bewley, W. F. (1923). Mycological Report. 8th Annu. Rep. Cheshunt expt. Sta. pp. 34,35.

CHAMBERLAIN, E. E. (1954). Plant Virus Diseases In New Zealand, N.Z. D.S.I.R., Bull. 108.

COBB, N. A. (1901). Woodiness of the passion fruit. Agric Gaz. N.S.W. 12: 407-18.

MAGEE, C. J. (1948). Woodiness or mosaic disease of passion fruit. Agric. Gaz. N.S.W. 59: 199-202.

McDonald, J. (1937). Report of Senior Plant Pathologist. Rep. Dep. Agric. Kenya. 1936.

McKnight, T. (1953). The woodiness virus of the passion vine (*Passifiora edulis* Sims.). Qd. J. agric. Sci. 10: 1-32.

PALM, B. T. (1922). Verslag van het Deli Proefstation over 1 Juli 1920 - 30 Juni 1921. Meded. Deli Proefstat. te Medan-Sumatra. 1 Ser. II 21: 72 pp. (Rev. appl. Mycol. 11; 35):

SMITH, K. M. (1957). A text book of Plant Virus Disease, 2nd. Ed. pp. 225-227. London, Churchill.

STOREY, H. H. (1940). Annual Report of the Plant Pathologist. Annu. Rep. E. Afr. Res. Sta. Amani, 1939: 8-11. APPENDIX 1.—The dilution end point of chlorotic spot of passion fruit, using Passiflora foetida as the test plant.

Dilution	n.	Proportion of Plants Infected.		
Undiluted		 20/20		
1:10		 20/20		
1:100		 20/20		
1:1,000		 20/20		
1:10,000		 20/20		
1:100,000		 12/20		
1:1,000,000		 3/20		
1:10,000,000		 0/20		
1:100,000,00	0	 0/20		

APPENDIX 3.—The longevity in vitro of chlorotic spot of passion fruit, at a room temperature of 28 degrees Centigrade, using *Passiflora foetida* as the test plant.

Ex	lime o posure Hours.		Proportion of Plants Infected.							
0							20,/20			
24							16/20			
48							2/20			
.72.		2	1				0/20			
96			1				0/20			
120							0/20			
1144	1.5	1	1		*	. 8	0/20	4		. 7

APPENDIX 5.—Transmission of chlorotic spot of passion fruit by insects found infesting Passiflora foetida in the field.

Insect Species	No. Insect per plant.	Proportion of Plants Infected.
Aphis gossypii (a)	20	6/20
Red Spider	20	0/20
Euricania splendida F. (b)	20	0/20
Nisia atrovenosa Leth. (c)	20	0/20

a. Identified by Dr. V. F. Eastop.

APPENDIX 2.—The thermal inactivation point of chlorotic spot of passion fruit, at an exposure of 10 minutes, using *Passiflora foetida* as the test plant.

in	mperati Degre	es	Proportion of Plants Infected.			
28			20/20			
35			20/20			
40			16/20			
45			11/20			
50			9/10			
55			6/20			
60			2/20			
65			0/20			
70			0/20			

APPENDIX 4.—The percentage of seed transmission of chlorotic spot virus in *Passiflora foetida*.

Plant.	No. Seeds Planted.	No. Plants.	Per Cent. Germination.	Per Cent. Diseased.
Healthy	2,000	1,973	98.7	Nil
Diseased		1,968	98.4	Nil

APPENDIX 6.—Persistency test of chlorotic spot virus using Aphis gossypii as the vector.

Aphid Number	1		Time 3								11
1	+	_		_	D	6 0					
2	+	-	-	-	-	D					
3	+	-				_				D	
4	+	-	-		-	D					
5		-	-	-		-		-	D		
6	-	-	-				-	-	_	-	
7	+	-		-		1	-	-	-	-	
8	-	-			-	D					
9	+	-	-	D							
10	-	-			-	-	_	D			
11		-	_	-		-	_	_			D
. 12 .		-				-	-	-	-	inda	-

D death of aphid.

b. Identified by Dr. J. J. H. Szent-Ivany.

c. Identified by Mr. R. G. Fennah.

⁺ infection.

⁻ non-infective.

APPENDIX 7.—Comparison of cucumber mosaic virus (Smith, 1957), passion fruit woodiness (McKnight, 1953) and chlorotic spot virus (van Velsen).

	Pi	operty.			Cucumber Mosaic.	Passion Fruit Woodiness.	Chlorotic Spot
Host range—							
Passiflora alba			 	 	N.R.	+	+
P. edulis			 	 	+	+	
P. edulis var. flavic	arpa		 	 	N.R.	+	+
P. quadrangularis			 	 	N.R.	N.R.	+
P. suberosa			 	 	N.R.	+	
P. foetida			 	 	N.R.	1	+
Cucumis sativus			 	 	+		
Tobacco			 	 	+		
Tomato			 	 		2	_
Nicotiana glutinosa			 	 ****	+		-
Petunia hybrida		****	 	 ****	+-	122	-
Dilution end point			 	 	1:10,000	N.R.	10-7
Thermal In. Pt.	****		 	 ****	60-70	NR.	65 degrees C.
Longevity			 	 	3-4 days	N.R.	3 days
Insect vectors			 ****	 ****	Aphis gossypii	A. gossypii	A. gossypii
					Myzus persicae	M. persicae	N.R.
					Macrosiphum	Macrosiphum	N.R.
				10.0	euphorbiae	gei	A TOTAL TOTAL
					Aulacorthum	NR.	NR.
					solani		
Persistency			 	 	Non-persistent	NR.	Non-persistent

⁺ susceptible.

Port Moresby: W. S. Nicholas, Government Printer .-- 5731/8.61.

⁻ not susceptible.

N.R. No results given.

Shell Chemical

Insect Pest, Disease and Weed problems on plantations and farms

SHELL DIELDRIN 15% CONCENTRATE
SHELL ALDRIN 40% CONCENTRATE
SHELL ENDRIN 26% CONCENTRATE
SHELL DDT 25% EMULSION
SHELL DIAZINON 16% CONCENTRATE
SHELL DIELDRIN 1½% DUST

Concentrates and Emulsions :

Dusts :

Grafting Mastics:

Fungicides:

Weedkillers:

SHELL ALDRIN 2½% DUST
SHELL WHITESPRAY
SHELL GRAFTING MASTICS
(Pruning Compound)
SHELL COPPER OXYCHLORIDE
SHELL MICRONISED SULPHUR
SHELL WEEDKILLERS

Packed in 4 gallon, 1 gallon and pint containers.

Packed in 56 lb., 28 lb., and 5 lb. lined bags.

Packed in 5 lb. and 1 lb. tins.

Packed in 56 lb. and 8 lb. bags.

Packed in 44 gallon, 4 gallon and 1 gallon containers.

Shell Chemical

(AUSTRALIA) PTY. LTD. (Inc. in Victoria)

Melbourne • Sydney • Brisbane • Adelaide • Perth • Hobart
An Affiliate of The Shell Co of Aust. and registered user of its Trade Marks.

SC604/24

Complete Banking Services Papua and New Guinea

Port Moresby Branch

- Current accounts (cheque accounts)
- Savings accounts with Bank of New South Wales Savings Bank Limited
- Interest-bearing deposit accounts
- Accommodation by way of overdrafts and loans
- Gift cheques
- Banking by mail
- Safe custody of securities and valuables
- Purchase and sale of bonds, stocks, and shares
- Finance of oversea trade

- Remittances to all important cities throughout the world
- @ Purchase and sale of oversea currencies
- Forward exchange contracts
- Special facilities for assisting travellers
- Travellers' circular and other personal letters of credit
- · Travellers' cheques
- Trade introductions
- · Economic and trade information
- Administration of investments

Residents and visitors are invited to avail themselves of these services.

Branches

PORT MORESBY (Papua) BULOLO (New Guinea) MADANG (New Guinea) RABAUL (New Guinea) SAMARAI (Papua)

GOROKA (New Guinea) LAE (New Guinea)

Agencies

KONEDOBU (Papua) -WAU (New Guinea) BOROKO (Papua) KOKOPO (New Guinea)

NATIVE MARKET, LAE (New Guinea)

BANK OF NEW SOUTH WALES

Over 1,000 branches and agencies throughout Australia, New Zealand, Fiji, Papua and New Guinea, and 3 branches in London.

(INCORPORATED IN NEW SOUTH WALES WITH LIMITED LIABILITY)