Aircraft Disinsection Procedures.*

G. P. KELENY.†

ABSTRACT.

The increasing volume and speed of international air services has greatly increased the risk of disseminating insect pests and vectors of diseases, including agricultural pests and diseases. It is the responsibility of national plant quarantine services to institute the necessary control measures. Methods of disinsecting aircraft are discussed and it is recommended that spraying by aerosols be carried out upon the arrival of the aircraft at the airport of entry, and before the disembarkation of passengers and crew. Aerosol formulations used for aircraft disinsection should contain a concentration of the active principles of not less than that contained in the "Standard Reference Aerosol" recommended by W.H.O. Attention is drawn to the possibilities of vapour fumigation.

THE ever-increasing volume of international air traffic, the constantly increasing speed and range of aircraft and the development of insecticide resistant pests and disease vectors create considerable problems for plant quarantine services. This increasing air traffic places a heavy responsibility on the authorities charged with preventing the dissemination of insect pests or diseases affecting plants. Relatively few studies have been made of the effect of aircraft movements on the dissemination of insect pests; the outstanding example being that of Campbell carried out in the Cocos-Keeling Islands (1952).

The F.A.O. Regional Plant Protection Committee at its fourth meeting in Manila drew attention to the risk of spreading diseases and pests by aircraft and recommended to member countries that appropriate steps be taken to reduce the risk to an absolute minimum. Considerable developments have taken place in aircraft treatment methods during recent years.

The standard procedures previously recommended were: (a) Pre-flight disinsection, i.e., treatment of the aircraft prior to the embarkation of the passengers and crew; or (b) in-flight disinsection carried out prior to landing at airport of entry. These methods, though included in the recommended practices contained in previous editions of Annex 9 to the Convention of International Civil Aviation, were often found

to be less than fully efficient. The following remarks in the Eleventh Report of the Expert Committee on Insecticides of the World Health Organization (1961) illustrate the position:

"The Committee reviewed the evidence that has accumulated since its seventh report in which recommendations were made against in-the-air disinsection of aircraft with aerosols. Notable examples were the report that during the year ending 30th June, 1957, out of 1,592 mosquitoes found aboard aircraft arriving at Miami International Airport following in-the-air treatment with aerosols before arrival, 305 were still alive, and the more recent advice from the Philippines Government that although its quarantine regulations specify in-the-air disinsection for incoming aircraft, collections made following landing, over a five-year period, showed that 87 per cent. of the mosquitoes were still alive.

"Replies to Circular letter 15 indicated that despite the ineffectiveness of in-the-air disinsection with aerosols, approximately 30 per cent, of the 111 countries replying require or accept this method of aircraft disinsection (6 per cent, with some reservations), while about 10 per cent, refuse to accept it in all or some instances.

"The Committee reaffirmed the previous recommendation that in-the-air disinsection of aircraft with aerosols should not be recognized as complying with the requirements of the International Sanitary Regulations."

"The Committee noted that, discounting those governments that have no disinsection requirements of any kind, some 60 per cent. of the remainder of those replying to the circular letter make provisions for post-arrival disinsection. The Committee also considered the frequent opportunities for vectors aboard aircraft to escape after the plane has landed and before disinsection could be accomplished (e.g., through open cockpit windows, from the wheel wells or through the cabin door as it is opened to admit the Airport Health Officer or his representative)."

The deliberations of the World Health Organization Committee led to the development of the 'blocks away' disinsection method. This

^{*} Paper presented at the meeting of the F.A.O. Regional Plant Protection Committee for the South-East Asia and Pacific Region, held at Canberra, December, 1964.

[†] Plant Introduction Officer, Department of Agriculture, Stock and Fisheries, Port Moresby.

method was incorporated in the Fifth Edition of Annex 9 (containing recommended practices) to the Convention on International Civil Aviation dated April, 1964.

The new recommended procedures are :— Section 2.21

When disinsecting is required by a Contracting State as a public health measure, that requirement shall be deemed to have been met by discharging into those portions of the aircraft which may carry insects from one area to another, an insecticide of a strength, formula and method of dispersal recommended by World Health Organization and acceptable to that State, such insecticide to be effectively discharged:—

- (a) into the flight deck and into those portions of the aircraft which cannot be reached when the aircraft is moving, as near as possible to the time of the aircraft's last departure before entering the State and in sufficient time to avoid delaying such departure; and
- (b) into those portions of the aircraft which can be reached when the aircraft is moving, after the time of the aircraft's last departure before entering the State, either—
 - (i) by means of an aerosol spray, or any equivalent system, while the aircraft is taxying from the ramp to the runway for takeoff; or
 - (ii) if the aircraft is suitably equipped, by means of an automatic dispersal of vapour while the aircraft is flying, but as far in advance as possible and at least thirty minutes prior to first landing; or
 - (iii) by other equally effective means.

The above procedures, as adopted, overcome the previous objections by airlines to the 'blocks away' method, namely that the introduction of an aerosol into the cockpit just prior to takeoff might affect the judgement of some pilots, who might be allergic to the spraying compounds, and thus endanger the safety of the aircraft.

However, until such time as automatic spraying equipment is installed in aircraft the 'blocks away' method is open to the same objections as the in-flight treatment, namely that it is applied by airlines personnel who are likely to be more concerned with passenger reaction than thorough disinsection and pest control.

Under present circumstances the most reliable aircraft disinsection method is the post-arrival treatment by aerosol of all parts of the aircraft (including passenger, crew, cargo and baggage compartments) by a government inspector prior to the disembarkation of the passengers or crew. It is recommended for adoption by all member countries. It is emphasised that the provision of Annex 9 are only recommendations and all countries are free to register their disagreement and alternate requirements.

The following disinsection procedures are recommended.

Upon arrival of the aircraft at the first airport of entry and before the disembarkation of the passengers and crew, all passenger and crew compartments should be lightly sprayed with an aerosol by the responsible quarantine official. This is the so called 'knock down' spray and the aircraft should be kept closed up for five minutes. Immediately after the disembarkation of the passengers and crew the aircraft should be closed up again and all compartments thoroughly disinsected, the aircraft remaining closed up for seven minutes. Concurrently with the above procedures the cargo and luggage compartments should be sprayed with an aerosol, then closed again for a period of seven minutes before unloading operations are authorized.

Pre-flight disinsection is still widely practiced in many countries. The certificates stating this treatment may be a useful additional safeguard, but the possession of such a certificate should not exempt an aircraft from post-arrival disinsection at the first airport of entry. Similarly in-flight disinsection should not be accepted as an alternate to thorough spraying by government personnel.

Aerosol formulations.

The next consideration is the formulation of aerosols best suited for aircraft disinsection, i.e., type and concentration of the active principles (both knock down and persistent), solvents, propellants, etc. It is understood that in most countries ordinary household aerosol preparations are being used for aircraft disinsection. It is submitted that household formulations are not altogether suitable for plant quarantine purposes. Pests of agricultural importance are usually more resistant to insecticides than flies or mosquitoes,

wi

therefore, it is considered that for plant quarantine purposes an aerosol should contain a higher percentage of the active principles than is customary in commercial household preparations.

The following formula, called standard reference aerosol, is recommended for use in aircraft by the Expert Committee on Insecticides of World Health Organization:—

	Per cent.
Denother of 105	by weight.
Pyrethrum extract (25 per cent.	
pyrethrins)	1.6
D.D.T. technical	3.0
Xylene	7.5
Odourless petroleum distillate	2.9
Dichlorodifluoromethane	42.5
Trichlorofluoromethane	42.5
As compared with the above stidely used commercial aerosol contains	andard, a ins:—
Gamma isomer BHC	
(Lindane) 0.3 per	cent. w/v
	cent. w/v
_i	cent. W/V
Other formulations recommended by	

ic .—	
Constitution de bez degli que	Per cent.
G-651	
Pyrethrum extract (20 per cent. pyrethrins)	6.0
D.D.T	2.0
Aromatic petroleum derivative solvent	8.0
Dichlorodifluoromethane (Freon 12 or Genetron 12)	84.0
G-1029	
Pyrethrum extract (20 per cent.	6.0
D.D.T	2.0
Aromatic petroleum derivative solvents:—	dend Tille s ministerici
Velsicol AR 60 or Socony Vacuum 544 G	6.0
Velsicol AR 50 or Socony Vacuum 544 C	2.0
Trichlorofluoromethane (Freon 11 or Genetron 11)	25.2
Dichlorodifluoromethane (Freon 12 or Genetron 12)	58.8

Information seems to indicate that there are technical difficulties in connection with aerosol formulation in increasing the D.D.T. content above 3 per cent. The solvents and propellants used have been tested and do not cause undue passenger discomfort, nor do they cause damage to the perspex or other parts of the aircraft.

The use of aerosols is the only treatment generally acceptable for aircraft disinsection but the method has some weaknesses such as:—

- (a) relative ineffectiveness of aerosols applied in airborne aircraft;
- (b) difficulty of ensuring that treatment has been carried out,

The main reason why in-the-air aerosol treatments are not very effective are :-

- (a) they are rapidly removed from the aircraft through ventilation;
- (b) they impact on various objects in the aircraft; and
- (c) they fail to penetrate into many parts of the aircraft where insects may be resting.

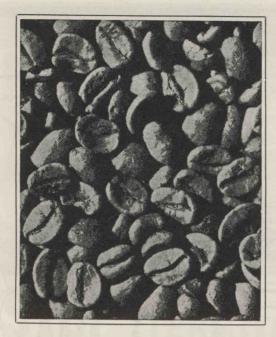
Most of the above difficulties could be overcome by a vapour disinsection method. In contrast to aerosol particles, vapour follows the laws for the dispersion of gases. The vapour will penetrate to all portions of the aircraft and, if an adequate concentration is maintained for a sufficient period of time, will exert the required insecticidal effect.

Experiments indicate that DDVP (0, 0-dimethyl 0-2, 2-dichlorovinyl phosphate) is a compound which appears to meet all the foregoing requirements and satisfactory systems have been developed in the United States for the vapour disinsection of aircraft. Commercial sprays containing DDVP for household use are already on the market, thus it is confidently expected that it would be approved for use in aircraft in the near future. The present tests are understood to be on the possible toxic effects to humans of concentrations required for effective insect control.

In view of the fact that the initial spray is only for knock down purposes it is thought an aerosol containing pyrethrins only might be suitable for the purpose, leaving the formulation with the persistent insecticide for the second application.

Summarizing the position and the recommendations.

- 1. The increasing volume and speed of international air services has greatly increased the danger of disseminating insect pests and vectors of diseases.
- 2. Pre-flight and in-flight disinsection, practiced by many countries, are ineffective.


- 3. Aircraft disinsection is the first line of defence against the incursion of introduced pests.
- 4. The treatment recommended by the International Civil Aviation Organization is the 'blocks away' method developed by the World Health Organization.
- 5. The reliability and effectiveness of the 'blocks away' method depends on the installation of mechanical means of aerosol dispersion.
- 6. Pending the installation of such equipment in aircraft, it is recommended that post-arrival disinsection be applied by the quarantine authorities on arrival of the aircraft at the airport of entry. Procedures recommended are:
 - (a) a light knock-down spray immediately on arrival of the aircraft and prior to the disembarkation of passengers and crew;
 - (b) a thorough spraying following the disembarkation of passengers and crew;
 - (c) the aircraft to be kept completely closed up during both treatments; and
 - (d) the cargo and luggage holds should be disinsected concurrently with the main compartments.
- 7. The aerosol formulation used for aircraft disinsection should contain a concentration of the active principles, both knock down and persistent, of not less than that contained in the 'Standard reference aerosol' recommended by W.H.O.
- 8. Attention is drawn to the latest developments using vapour fumigation methods, such as DDVP, for aircraft disinsection. Vapour fumigation is reported to be the most effective method of treatment ensuring complete dispersal of the fumigant.

(Received December, 1965.)

REFERENCES.

- Busvine, J. R. (1952). Disinfestation of aircraft by aerosols, *Pyrethrum Post*, March.
- CAMPBELL, T. G. (1952). Entomological survey of Cocos-Keeling Islands. Aviation Medicine Memorandum No. 14, Dept. of Civil Aviation (Australia).

- KELENY, G. P. (1964). Plant Quarantine in Papua and New Guinea, Australian Territories, 4 (1): 26-32.
- RASMUSSEN, W. A., JENSEN, J. A., STEIN, W. J. AND MAYES, W. J. (1963). Toxicological Studies of DDVP for Disinsection of Aircraft, Aerospace Medicine, 34 (7): 593-600.
- SULLIVAN, W. N., KEIDING, J. AND WRIGHT, J. W. (1961). WHO studies on aircraft disinsection at 'blocks away'. World Health Organization, Insecticides, No. 128.
- SULLIVAN, W. N., AZURIN, J. L. WRIGHT, J. W. AND GRATZ, N. G. (1963). Studies on aircraft Disinsection at 'blocks away' in tropical areas, World Health Organization, Vector Control, No. 19.
- TEW, R. P., DAVID, W. A. L. AND BUSVINE, J. R. (1951). Factors affecting the efficiency of aircraft disinsectisation procedures, Monthly Bulletin of the Ministry of Health and Public Health Laboratory Service, pp. 30-38.
- WORLD HEALTH ORGANIZATION (1961). Aircraft Disinsection. 11th Report of the Expert Committee on Insecticides W.H.O., Technical Report Series, No. 206.
- Since the preparation of the above paper for the FAO Conference at Canberra, a number of articles were noted, all confirming the safety of the use of DDVP (Dichlorvos or Vapona) in aircraft disinsection and on the development of mechanical disinsection systems for aircraft:
- CASSIDA, J. E. (1965). Toxicology and pharmacology of 'Vapona' insecticide. Shell Agricultural Chemical Bulletin, ADB: 872/Da, 28.
- HAYES, W. J. (1961). Safety of DDVP for the disinsection of aircraft. Bull. World Hlth Org., 24: 629-633.
- JENSEN, J. A., PEARCE, G. W. AND QUARTERMAN, K. D. (1961). A mechanical system for dispensing known amount of insecticidal vapours. *Bull. World Hltb Org.*, 24: 617-622.
- Schoof, H. F., Jensen, J. A., Porter, J. E. and Maddock, D. R. (1961). Disinsection of aircraft with a mechanical dispenser of DDVP vapour. Bull. World Hltb. Org., 24:623-628.
- WITTER, R. E., GAINES, T. B., SHORT, J. G., SEDLAK, V. A. AND MADDOCK, D. R. (1961). Studies on the safety of DDVP for the disinsection of commercial aircraft. *Bull. World Hltb. Org.*, 24:635-642.
- SHELL CHEMICALS, (1965). Vapona in slow release strips. Safety Use Manual, No. 2/V.
- U.S. DEPT. OF HEALTH, EDUCATION & WELFARE (1966). The Dichlorvos aircraft disinsection system. Public Health Service, Communicable Disease Center.

ten reasons why you should use 'Gramoxone' (Paraquat) to kill weeds and grass in your coffee plantation:

- 1. It kills all green growth with which it comes in contact.
- 2. It is cheaper than traditional manual methods of weed control.
- 3. It does not damage mature coffee trees if applied to weeds around trunk base. (Young and seedling trees must be protected.)
- 4. It is rapidly absorbed by weed foliage and its effects can be seen within a few hours.
- 5. It can be applied in almost any weather, being unaffected by drought con-

- ditions or rain falling shortly after spraying.
- **6.** It is inactivated on contact with the soil and cannot be taken up by plant roots.
- 7. It is NON VOLATILE and is free of the risks attached to hormone weed-killers.
- **8.** It has no long term phytotoxic effects as there is no risk of harmful residues building up in the soil.
- 9. It is easily mixed with water and is active at low concentrates.

10. There is no danger to operators from diluted 'Gramoxone' (Paraquat) and no special protective clothing is required for spraying.

Get 'Gramoxone' (Paraquat) from all branches of: BURNS PHILP (N.G.) LTD. STEAMSHIPS TRADING CO. LTD. COLYER WATSON (N.G.) LTD. ISLAND PRODUCTS LTD. NEW GUINEA CO. LTD.

Enquiries to: Mr. C. Cannon, Manager, ICIANZ Ltd., P.O. Box 137, Lae.



recognize any of these pests?

Coconut, cacao, coffee and rubber plantations have scores of insect problems that eat into profits, Soil Pests which attack vegetables, fungus diseases, and weeds, weeds, weeds! The solution to a lot of your problems lies with Shell Chemicals who can provide you with adequate information on Weedkillers, Fungicides, Insecticides, Soil Fumigants, Fertilizers, Grafting mastics and Spraying Oils.

Agricultural Problems? Information on all Shell Chemical products can be obtained by writing to:—

Shell Chemical (Aust.) Pty. Ltd. P.O. Box 169 Port Moresby, New Guinea.

(Affiliate of The Shell Company of Australia Limited and Registered User of its Trade Marks) NG3

STOP TERMITES

and timber borer too with

dieldrin concentrate (15%)

Termites have a taste for timber and their ability to live on it is unique among insects. If you let them set tooth on your buildings you'll soon be faced with expensive repairs. "Dieldrin" is being used throughout the world today to stop both termites and timber borers by big pest control operators and it has proved its long lasting effectiveness on both new and old dwellings. Just add water to dieldrin and apply to the soil around foundations. An impregnable barrier will remain for years. For timber borer "dieldrin" is applied with kerosine, by brush or spraying. Ring Shell Chemical or write for an illustrated folder on termite control with dieldrin.

SHELL CHEMICAL

(AUSTRALIA) PTY. LTD. (Inc. in Victoria)

Melbourne - Sydney - Brisbane - Adelaide - Perth - Hobart

An Affiliate of the Shell Co. of Aust. and registered user of its trade marks.

FOR IMPROVED COPRA PRODUCTION

Coconut Palms adequately supplied with Nitrogen and Potash develop dark green glossy fronds; regular spathe formation is assured and the dropping of button nuts is at a minimum. In RUSTICA 16-0-28 the most desirable balance of Nitrogen and Potash has been achieved. The use of RUSTICA 16-0-28 is highly recommended if maximum copra production is to be obtained. RUSTICA fertilisers are climate-proof packed, easily stored and spread, and their highly concentrated nutrients reduce costs in transport and storage.

3/269/

RUSTICA

RUSTICA MEANS MORE PROFIT

For supplies of fertilisers manufactured by RUHR-STICKSTOFF AG, Bochum, West Germany, and for information, write to:

Theo Thomas & Co. Pty. Ltd. P. O. Box 536 RABAUL Luburua Ltd. P.O. Box 6 KAVIENG Collins & Leahy & Co. Pty. Ltd.
P. O. Box 57
GOROKA

TROPICAL INOCULANTS

for effective legume nodulation

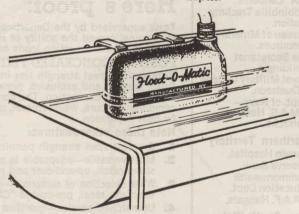
Inoculants available for all types of legumes

Also available

Lime and Gum Arabic

for lime pelleting

SEED of tropical legumes also available.


"COSMIC" STOCK WATERER

Self filling, means constant clean water, with no flooding, no sharp protruding edges, non-corrosive alloy. High or low pressure, connect water from either side. Drain plug for easy cleaning.

More depth.

FLOAT-O-MATIC

Fits most watering tanks and troughs. Shuts off water automatically. Ideal for cattle, pigs, sheep and pets. Quickly installed with only 2 thumb screws. Foam plastic float cannot leak or become waterlogged. No adjustments necessary with the Float-o-matic.

ELECTRIC FENCERS

"Cosmic" (illust.) lightweight, waterproof, specially designed for strip grazing.

Also "Tiki" Universal Fencer, weatherproof, for mixed installation or as movable unit.

Also available: —Wolseley Electric Fencer, fencing reels, electric fencing posts, insulators, electric fence wire in 500ft. and 1,000ft. coils.

★ Full stocks of vaccines and veterinary instruments, stainless steel and brass nipples, brands, etc.

MILKWARE RURAL DISTRIBUTORS

BRIDGE ST., VALLEY, BRISBANE. 4006. Ph. 51 5585.

SPECIFIED FOR THESE COMMONWEALTH DEPT. OF WORKS PROJECTS:

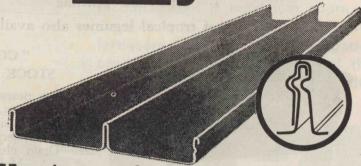
New Guinea

Housing for Papuan Infantry Regiment. Taurama Army Barracks. Commonwealth Banks. Reserve Banks Honiara, Port Moresby. Lae Army Barracks. P.M.G. Station, Rabaul

Australian Capital Territory

Orroral Valley
Tracking Station.
2CA Canberra.
Tidbinbilla Tracking
Station.
Bureau of Mineral
Resources.
The Secretariat
Building.
Royal Military College
—Duntroon.
Dept. of Navy—
H.M.A.S. Harman
Barracks.

Northern Territory
Darwin Hospital.
Reserve Bank.
Commonwealth
Education Dept.
R.A.A.F. Hangars.


New South Wales
Holsworthy Army
Camp.
R.A.A.F. Base,
Richmond.
Kapooka Army Camp.
D.C.A. Buildings,
Mascot.
Atomic Energy

... and similar projects in other States.

Commission.

Fiji
Derrick Technical
Institute, Suva.
Suva Post Office.

Brownbuilt the strong roof!

Here's proof:

Brownbuilt's unique button-punching process.

Tests supervised by the Department of Civil Engineering, University of Melbourne, proved the ability of the Brownbuilt decking system to withstand upward suction loads equivalent to winds of cyclonic force.

POSITIVE CONCEALED FIXING.

Brownbuilt's great strength lies in its deep rib profile, concealed fixing method and exclusive, proven button-punching process for sheet interconnection. The combination of all three results in a completely secure, weatherproof, maintenance-free roof unaffected by heat expansion.

Note these other features:

- 1. Greatest span strength permits economical roof frame designs.
- Most versatile—adaptable to all roof designs . . . flat skillion, steep pitch, up-and-over and radial pitch.
- 3. Wide selection of materials—galvanised steel, copper, aluminium, stainless steel, pre-coated "COLORARMOR."
- 4. Unmatched service—qualified technical representation coupled with smooth-running shipping facilities through our Export Division. Prompt and complete documentation—we take care of the details.

Brownbuilt

METAL SECTIONS DIVISION

499 Princes Highway, Kirrawee, Sydney 2232. Cable: Metform.

Local Distributors

Morobe Constructions Pty. Ltd., Saraga Street, 6 Mile, Port Moresby. D. C. Watkins Ltd., Angau Drive, Boroka, Port Moresby. John Stubbs & Sons (Papua) Ltd., Lawes Road, Port Moresby. Madang Building Supplies, Madang. Lae Plumbing Ltd., Lae.

Reddy Constructions, Suva, Fiji.

BB:P18

Coffee planters Shell can end your weed problems

The full range of proven Shell weedicides gives you more economical, long-term control of weeds and grasses right through your plantation.

Shell research and field work throughout the world has produced selective weedkillers for special application: others for longlasting 'blanket' eradication. The range includes:

- GRAMEVIN* for positive, selective control of grasses. Its systemic action kills grass roots.
- KARMEX* for long-lasting weed control on plantations. Safe on coffee at recommended rates.
- HYVAR X* for effective long-term weed control on non-crop areas.
- NONIDET* WK -- the economical wetting agent, with 100% active ingredient.

Your Shell agent or one of our trained field representatives will be glad to advise you on a Shell weed control programme to meet your needs. Contact him now, or write to P.O. Box 169, Port Moresby.

*Registered Trade Marks.

Shell Company (Pacific Islands) Ltd.

Terranova picals

Sow Terranova 'calculated' mixtures of tropical egumes and grasses for maximum Spring, Summer and Autumn production — under all seasonal conditions. Save your established temperate pastures for winter grazing. There are Terranova 'calculated' mixtures for all soil types and conditions. For technical details contact your seed merchant or

departmental agronomist or consult Andersons Seeds Ltd.

for price, purity, productivity and profit.

are sold and recommended by your local seed merchant

ANDERSONS SEEDS LTD..

68 BOUNDARY ST., BRISBANE TOWNSVILLE AND BILOELA, QLD., COFFS HARBOUR, N.S.W.