

ISSN 0256-954X

Papua New Guinea

**JOURNAL OF
AGRICULTURE,
FORESTRY AND
FISHERIES**

(Formerly the Papua New Guinea Agricultural Journal)
VOLUME 50 NUMBER 1 & 2, DECEMBER, 2007

DEPARTMENT OF AGRICULTURE AND LIVESTOCK

PAPUA NEW GUINEA
JOURNAL OF AGRICULTURE, FORESTRY AND FISHERIES

(Abbr. Key Title = P.N.G. j. agric. for. fish.)

(Formerly The Papua New Guinea Agricultural Journal)

Published by the Department of Agriculture and Livestock (DAL)

Editor in Chief : **Dr. R. Chris Dekuku**
Secretary : **Betty Aiga**

Department of Agriculture and Livestock, P.O. Box 2033, PORT MORESBY
Papua New Guinea

Editorial Advisory Board

Dr. Michael Bourke (ANU, Canberra)	Mr. Joachim Solien (DAL, Konedobu)
Mr. Anton K. Benjamin (DAL)	Prof. Lance Hill (UPNG)
Dr. Simon Saulei (UPNG)	Dr. John Moxon (CCRI, Rabaul)
Dr. Shu Fukai (Uni. QLD)	Prof. R. Muniappan (Uni. Guam, Guam)
Mr. Lastus Kuniata (Ramu Sugar Ltd)	Dr. Alan Quartermain (Vudal University)
Dr. Gariba Danbaro (UNITECH, Lae)	Mr. Matthew'wela Kanua (PNGSDP)

Published Biannually

Annual Subscriptions

Australia/Asia/Pacific (US\$15.00 by Airmail, US\$14.00 by Surface mail)
Other countries (US\$18.00 by Airmail, US\$15.00 by Surface mail)
Domestic K25.00 by Airmail, K23.00 by Surface mail)

(Prices are subject to change without notice)

Copyright © 2007 - Department of Agriculture and Livestock

Opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the view of the Department of Agriculture and Livestock.

DAL PRINTSHOP, TOWN, PORT MORESBY

Cover Design by Jackson Kaumana

PAPUA NEW GUINEA
JOURNAL OF AGRICULTURE, FORESTRY AND FISHERIES

(Formerly the Papua New Guinea Agriculture Journal)

Volume 50

Nos. 1 & 2

December, 2007

CONTENTS

	Pages
Efficacy of five insecticides against <i>Oribius inimicus</i> Marshall and <i>O. destructor</i> Marshall (Coleoptera: Curculionidae) by Pus Wesis¹, Benjamin Niangu, Mark Ero, David Elmoultie and Anthony R. Clarke	03-08
Assessment of Kavalactones in Kava, <i>Piper methysticum</i> Forst. f., Cultivars of Papua New Guinea by Michael Dom	09-14
Selection of rice (<i>Oryza sativa</i> L.) varieties for upland rainfed conditions in Papua New Guinea by Stanis Malangen and Birte Komolong	15-22
Prevalence of antibodies to Leptospiral Serovars in farm ruminant animals in the Markham valley, Papua New Guinea by Andy K. Yombo, M. A. Samad and S. Reid	23-27
Yield of four varieties of rice (<i>Oryza Sativa</i> L.) in two soil types and contrasting agro-ecological zones by Dr. Muhammad Muneer	29-36
Volatile chemical constituents of Patchouli (<i>Pogostemon cablin</i> (Blanco) Benth.: Labiateae) from three localities in Papua New Guinea by Stewart W Wossa, Topul Rali and David N Leach	37-42
<i>Papua New Guinea Journal of Agriculture, Forestry and Fisheries</i> Index	43-63
Instructions to contributors	65-67

EFFICACY OF FIVE INSECTICIDES AGAINST *ORIBIUS INIMICUS* MARSHALL AND *O. DESTRUCTOR* MARSHALL (COLEOPTERA: CURCULIONIDAE)

Pus Wesis¹, Benjamin Niangu¹, Mark Ero^{2&3}, David Elmouttie³ and Anthony R. Clarke³

ABSTRACT

Oribius inimicus and *O. destructor* are serious horticultural pests of the Highlands region of Papua New Guinea. Adult weevils feed externally on all non-woody parts of a wide range of agricultural and amenity plants. No insecticides currently registered for use in PNG have been formally tested against these insects. In this study we used laboratory bioassays to evaluate the efficacy of five insecticides (Karate® [Lambda-cyhalothrin], Malathion, Chlopyrifos, Target® [Primiphos-Methyl Permethrin] and Orthene® [Acephate]), all of which are commercially available and commonly used by Highlands' farmers. Follow-up laboratory and field trials of the two most promising chemicals tested efficacy at one-quarter, one-half and 1 x manufacturers' label dilution rates. Of the insecticides tested, Karate®, Target® and Chlopyrifos were found to be the most effective in terms of both total knockdown and time to knockdown. In laboratory bioassays, 100% mortality was reached within 20 minutes for these chemicals when insecticide was applied topically to individuals. In field studies, plots treated with Karate® yielded a significantly greater weight and number of fruit than plots treated with Target®, but different dosage rates (one-quarter, one-half or full manufacturers' recommended concentrations) within insecticide type did not alter yield. We recommend Karate® as the chemical of preference for Highlands' growers for *Oribius* control because of its significantly lower cost and better field control.

Keywords. Grey weevils, pest management, efficacy, Papua New Guinea

INTRODUCTION

Weevils of the genus *Oribius* (Marshall) (Coleoptera: Curculionidae) are abundant throughout Papua New Guinea (PNG) and West Papua, Indonesia. Belonging to a group of closely related, small flightless weevils known regionally as "grey weevils" (which also includes, for example, the genera *Apriocalus* Pascoe and *Hypotactus* Marshall [Moxon 1992]), *Oribius* spp are restricted to the island of New Guinea (Thomas & Verloop 1962) and the northern tip of Cape York, Australia (Zimmerman 1991). While the genus is considered to contain over 50 species (Marshall 1956), only eight of these are recognised as pestiferous in PNG (authors' unpublished data); no pest species are known to occur outside the island of New Guinea.

In common with other grey weevils, *Oribius* species are flightless and the adults walk onto their

host plants: larvae are soil dwelling and pupation occurs in the soil. Adults are the damaging stage, feeding on growing tips, soft shoots, green stems, flower buds and developing fruit of their host plants (Thistleton 1984). In the Highlands region of PNG, a very wide range of agricultural crops are attacked, from leafy greens through to introduced orchard trees, such as apples and oranges, and field crops such as coffee (Marshall 1957, 1959; Szent-Ivany 1959; Szent-Ivany & Stevens 1966; Greve & Ismay 1983; Thistleton 1984; Waterhouse 1997). *Oribius* spp are also recorded as forestry pests (Gray & Wylie 1974) and they are an abundant component of the PNG rainforest insect fauna (Novotny *et al.* 2002). Feeding by *oribius* weevils causes significant loss of growth, yield decline, downgrade of crop marketability and, in severe cases, tree and seedling mortality.

Although recognised as important pests since at least the 1950's, there has been very little formal

¹National Agricultural Research Institute, Main Highlands Programme-Aiyura, P.O. Box 384, Kainantu, Eastern Highlands Province, Papua New Guinea

²National Agricultural Research Institute, National Agricultural Insect Collection, P.O. Box 1691, Boroko, National Capital District, Papua New Guinea

³School of Natural Resource Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Qld 4001, Australia

Corresponding Author: Clarke, A.R., School of Natural Resource Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland, Australia, 4001, Phone: +61 7 3864 5023, Fax: +61 7 3864 1535, Email: a.clarke@qut.edu.au

study of the ecology or management of *Oribius* weevils (references cited herein cover the available literature). Currently, there is little control of *Oribius* species within Papua New Guinea's agricultural sector, despite crop yields increasing 100-200% when weevils are managed (authors' unpublished data). While some farmers do try to manage *Oribius* using insecticides, the efficacy of the different chemicals available and their most efficient and cost effective application rates have not been evaluated. Because of the highly significant yield gains which can be made when weevils are managed, it is imperative that research be undertaken which supplies easily implemented recommendations for weevil control. This paper represents the outcome of some of this research, on laboratory and field evaluation of five, locally available insecticides. We deliberately chose locally available chemicals as previous pest management research in PNG had demonstrated that trialling non-available chemicals (for example those registered in Australia but not sold in PNG) led to significant grower dissatisfaction when they could not immediately implement the benefits of trials in which they had participated or observed. Studies were conducted on two pest *Oribius* species, *O. inimicus* Marshall and *O. destructor* Marshall, which occur sympatrically in the Highlands' cropping districts.

MATERIALS AND METHODS

Study Site

Both laboratory and field trials were conducted at the [PNG] National Agricultural Research Institute (NARI) Main Highlands Program, Aiyura Valley (6°20'23" S 145°54'18"E), via Kainantu, Eastern Highlands Province, PNG. Laboratory trials were conducted under ambient conditions: mean temperature and relative humidity were 20.5°C and 90.0% respectively.

Insects and Laboratory Trials

Adult *Oribius inimicus* and *O. destructor* were bulk collected from various host plants around the Aiyura valley in the week preceding their use in laboratory trials. Insects were held in an outdoor insectary containing a mix of known host plants until used. Insects used in trials were thus of unknown age and maturity, although they could be, and were, sexed.

Five insecticides were used for the trials: Karate® [Lambda-cyhalothrin, 25g/L active ingredient], Malathion [500g/L active ingredient], Chlopyrifos [500g/L active ingredient], Target® [Pirimiphos-Methyl/Permethrin, 5 + 95g/L permethrin

pirimiphos-methyl] and Orthene® [Acephate, 75%w/v active ingredient]. Insecticides were chosen based on their ready availability for Highlands' growers, rather than any preconceptions about preferred mode of action, etc. For each insecticide three treatments and a control were applied which manipulated the insecticide's application mode:

- (i) Filter paper dipped into the insecticide and then allowed to air dry before being added as a lining to a petri dish;
- (ii) Insecticide misted onto weevils until droplets appeared (topical application);
- (iii) Host plant (*Thickhead, Crassocephalum crepidioides*) leaf material immersed in insecticide dilution, allowed to air dry, and then placed with weevils into a petri dish.
- (iv) Control – Water sprayed on individuals.

The basic replicate, 10 for each treatment, consisted of a 90mm diameter disposable petri dish, lined with filter paper, containing five male and five female weevils. Recordings of weevil morbidity were made at 5, 15, 30, 60, 360 and 1440 minutes after exposure, and then as required once every 24 hours until 100% mortality was reached. Treatments were abandoned after 336 hours. Insecticides were applied at a rate equivalent to manufacturers' label instructions for general horticultural use. These were: Karate® 0.9ml/L water; Malathion 2.5ml/L water; Chlopyrifos 4ml/L water; Target® 5ml/L water; Orthene® 0.24g/L water.

The three most efficacious insecticides were then further tested at lower concentrations (one-quarter and one-half of full dosage) using the most effective application methods. Each insecticide was tested using the same protocols as for the initial trials.

Field Trials

Based on lab results, two of the three most efficacious insecticides (Karate® and Target®, see results) were subsequently field validated at full (Karate®, 1ml/L; Target® 5ml/L), one-half and one-quarter concentrations. Three replicate field plots were planted on-station for each of the two insecticides tested. Each replicate plot consisting of 80 capsicum plants, separated into four quadrants, each quadrant of which was treated with the same insecticide at the three concentrations and a control (no insecticide application). Capsicums were chosen as they are readily available and commonly grown in the Highlands, have a rapid growth rate and are known hosts of *Oribius* (authors' unpublished data).

Trials were planted at Aiyura on 19.04.2005 and fruits were progressively harvested and weighed as they reached maturity (last harvest date 29.07.2005), in line with normal local farming practice. Insecticide application was conducted on a "as need" basis (based on observations from full concentration plots): this resulted in three sprays being applied on 23.05.2005, 22.06.2005 and 29.07.2005. On completion of the crop cycle, cumulative weights, the total number of fruits harvested and the total number of damaged fruits were calculated for each insecticide/concentration replicate.

Cost/benefit of control

A simple cost/benefit analysis was undertaken on the results obtained from the field trial. Costings were based on average local market value of capsicum for 2004-2005 (Kina 3.52/kg) and average local store costs of insecticides (Karate® K29.03/L, Target® K72.30/200ml, Wetting agent - Holimpas K16.00/5L). Labour costs were not included as we were targeting individual grower gardens where owner-farmers carry out all work. For the same reason we kept the results of the analysis at a small plot size, as against, for example, converting it to a per hectare figure, as horticultural crops in the Highlands are very rarely grown in large, contiguous fields.

RESULTS

Laboratory Results

Combining the different insecticides, application method significantly affected efficacy ($F=33.434$,

$df = 2, p < 0.001$), with topical application of insecticide being the most effective exposure technique: this overall result was consistent regardless of the insecticide or *Oribius* species tested (Table 1). Independent of exposure type, Chlophyrifos, Target® and Karate® were significantly more effective than the other two chemicals against both *O. inimicus* and *O. destructor* ($F_{inimicus} = 31.376, df = 4, p < 0.001$; $F_{destructor} = 24.886, df = 4, p < 0.001$). While the different *Oribius* species responded slightly differently to the different insecticides, with the most obvious difference being the much greater efficacy of malathion against *O. inimicus* than *O. destructor*, there was a generally consistent pattern in the response of both species to the different insecticides (Table 1).

Chlophyrifos, Target® and Karate® were further tested at reduced concentrations. For all insecticides combined, concentration had a significant effect on mortality ($F_{inimicus} = 6.489, df = 2, p < 0.001$; $F_{destructor} = 14.375, df = 2, p < 0.001$), with full strength applications being significantly more efficacious in seven of the twelve comparisons (Table 2). The efficacy of Chlophyrifos was most affected by a reduction in concentration, with time to 100% mortality for *O. destructor* being 12 times slower at one-quarter manufacturer's recommended dose than at full strength. Excluding this exception, all other reduced rate insecticides still caused 100% mortality within a maximum of 40 minutes, and on average within 22 minutes (Table 2).

Table 1: Mean time (minutes) to 100% mortality for *Oribius destructor* and *Oribius inimicus*, using five insecticides and three exposure treatments

Insecticide	<i>Oribius</i> spp.	Treatment			
		Topical	Substrate	To food	Control
Karate®	<i>O. destructor</i>	18.5 ± 2.7	330 ± 30	360 ± 0.00	> 20160
Target®	<i>O. destructor</i>	12 ± 1.5	468 ± 108	360 ± 0.00	> 20160
Chlophyrifos	<i>O. destructor</i>	14.5 ± 2.2	1440 ± 0.0	1440 ± 0.0	> 20160
Malathion	<i>O. destructor</i>	160 ± 54	> 20160	> 20160	> 20160
Orthene®	<i>O. destructor</i>	330 ± 30	> 20160	1152 ± 256	> 20160
Karate®	<i>O. inimicus</i>	7 ± 1.3	108 ± 42	360 ± 0.00	> 20160
Target®	<i>O. inimicus</i>	8 ± 1.5	10092 ± 2915	6288 ± 3029	> 20160
Chlophyrifos	<i>O. inimicus</i>	16.5 ± 1.5	900 ± 180	1322 ± 108	> 20160
Malathion	<i>O. inimicus</i>	16.5 ± 3.2	15300 ± 2195	17568 ± 1319	> 20160
Orthene®	<i>O. inimicus</i>	2052 ± 364	13248 ± 2369	2448 ± 528	> 20160

(Sample size for each treatment equals 10 replicates of 10 insects each).

Field Results

In the field validation studies for Karate® and Target®, both insecticides led to greater harvest yields than unsprayed control plots. However, insecticide type significantly influenced yield regardless of dosage treatment: plots treated with Karate® had a significantly greater harvestable weight of capsicums ($t = 2.65$, $df = 70$, $p = 0.01$) and number of fruit ($t = 2.286$, $df = 70$, $p = 0.025$) than those treated with Target® (Table 3). There was no significant effect of changing dosage rate within an insecticide. Insecticide type did not effect the number of damaged fruit ($t = 1.637$, $df = 70$, $p = 0.106$), which was high in all treatments (Table 3).

Cost/benefit of control

Results of the cost-benefit analysis showed that treatments to control oribius weevils were highly profitable, with one-quarter strength Karate®

control yielding a K66.40 increase in return over not controlling weevils (Table 4).

DISCUSSION

This study indicates that use of selected insecticides, such as Karate® and Target®, can be used to reduce damage and increase productivity in crops that are attacked by oribius weevils. Further, the cost/benefit analysis demonstrated that significant profit is to be gained with only a few spray applications during a cropping cycle. Because of its extra efficacy in the field (Table 3) and lower cost (Table 4), we recommend Karate® as the chemical of choice for *Oribius* control.

Yield benefits were recorded despite a relatively high level of damage still being experienced in

Table 2: Mean time (minutes) (± 1 S.E.) to 100% mortality for *Oribius destructor* and *O. inimicus* using three insecticides at one-quarter, one-half and full manufacturers' recommended concentration.

Insecticide	Species	Treatment		
		1/4 Concentration	1/2 Concentration	Full Concentration
Karate	<i>O. destructor</i>	40.5 \pm 5.5	18 \pm 5.9	18.5 \pm 2.7
Target	<i>O. destructor</i>	27.5 \pm 4.6*	14.5 \pm 3.6	12 \pm 1.5
Chlophyrifos	<i>O. destructor</i>	363 \pm 47*	38 \pm 3.6*	14.5 \pm 2.16
Karate	<i>O. inimicus</i>	22.5 \pm 2.5*	27 \pm 2.0*	7 \pm 1.3
Target	<i>O. inimicus</i>	14 \pm 1.0*	9.0 \pm 1.63	8 \pm 1.5
Chlophyrifos	<i>O. inimicus</i>	14 \pm 1.0	15.5 \pm 3.45	16.5 \pm 1.5

indicates significant difference at $p < 0.05$ from full concentration trial

Table 3: Mean (± 1 S.E.) number of undamaged fruit, damaged fruit, and harvestable weight of capsicum fruit grown under different insecticide regimes at Aiyura, Eastern Highlands Province, PNG.

Insecticide	Mean treatment yield (± 1 S.E.)			
	Control	1/4 dose	1/2 dose	Full dose
Karate				
Number undamaged fruit	27.3 \pm 5.9a	44.1 \pm 10.1b	37.1 \pm 8.7b	42.1 \pm 11.9b
Number damaged fruit	25.1 \pm 5.6a	33.7 \pm 7.9b	30.8 \pm 7.6b	31.5 \pm 9.5b
Fruit weight (Kg)	23.77 \pm 4.6a	42.5 \pm 9.0b	39 \pm 9.3b	39.6 \pm 10.1b
Target				
Number undamaged fruit	19.3 \pm 4.6	25.0 \pm 7.6	28.0 \pm 8.1	25.7 \pm 6.8
Number damaged fruit	18.4 \pm 4.5	22.7 \pm 7.0	25.1 \pm 7.9	22.8 \pm 6.4
Fruit weight (Kg)	16.9 \pm 4.5	24.6 \pm 7.7	22.2 \pm 6.6	25 \pm 6.4

Each treatment consisted of three replicated, 20 plant plots.

Table 4: Cost/benefit analysis for control of *Oribius* species on 60 capsicum plants using three insecticide concentration rates for Karate® (active ingredient Lambda-cyhalothrin) and Target® (active ingredient Pirimiphos-Methyl/Permethrin).

Parameter	Treatment			
	Unsprayed	One-quarter manufacturer's recommended rate	One-half manufacturer's recommended rate	Full manufacturer's recommended rate
KARATE®				
Treatment cost	0.00	0.16	0.23	0.38
Market Value (K/kg)	3.52	3.52	3.52	3.52
Productivity (Kg)	23.7	42.6	39.0	39.7
Profit (Kina)	83.42	149.79	137.05	139.36
TARGET®				
Treatment cost	0	3.7	7.31	14.54
Market Value (K/kg)	3.52	3.52	3.52	3.52
Productivity (Kg)	16.7	24.6	22.2	25.0
Profit (Kina)	58.78	82.89	70.83	73.46

Calculations based on the Papua New Guinea Kina (K) and figures are based on local store costs in Eastern Highlands Province, PNG. Profit is based on average local market value and total production for each treatment. Three spray applications were made during trial.

our treatment plots. In a separate trial (authors' unpublished data), fortnightly calendar spraying with Karate® did lead to reduced levels of damage in comparison to unsprayed controls, but did not negate all damage. Along with unpublished observational studies of the weevils, we explain the high level of damage in insecticide treated plots as being caused by: (i) the mobility of the weevils, which walk on and off plants twice daily; and (ii) the cryptic nature of surface feeding damage, which on young fruit may go unnoticed, but which becomes progressively more noticeable as the fruit grows. In this latter case it may imply that the three "as needed" spray applications in our field trials were either insufficient, or badly timed. Given these problems, particularly when garden plots are surrounded by non-treated weed vegetation (as is common in the Highlands), insecticide would need to be applied with a very high frequency to eliminate all damage. We do not endorse such an approach, however, given the well documented negative impacts which follow high level insecticide use.

Although a topical application is recommended (based on lab results), the efficacy of Karate® relative to Target® in the field may be linked to the chemical's persistence and mode of action. Lambda-cyhalothrin is considered to have a half life on the leaf-surface of five days (National Pesticide Telecommunications Network) and, in addition to its direct mortality effects, has a repellency action against insects (Tomlin 1997). This persistence on the substrate and repellency action may help it control weevils which walk onto the plant after application.

The efficacy of Target® and Karate® at reduced concentrations has significant implications for management. Although time to kill was lengthened in the laboratory environment, efficacy at one-quarter and one-half recommended concentrations did not lower yields within field trials. Using insecticides at one-quarter concentration reduces insecticide cost by 75%, a significant benefit in a cash poor society (Benjamin et al. 2001), and may make the difference as to

whether control is applied or not. The benefits of a lower concentration application may also be magnified as, although reduced concentrations still provide a lethal dose to *Oribius* weevils, the general principles of Integrated Pest Management (IPM) would predict that impacts on potential natural enemies and pollinators may be reduced.

ACKNOWLEDGMENTS

This project was funded by the National Government of Papua New Guinea and the Commonwealth of Australia through Australian Centre for International Agricultural Research (ACIAR) Project CS2/2001/032, *Impact and Management of Oribius weevils in Papua New Guinea*. The project was a joint collaboration between the National Agricultural Research Institute (PNG) and the Queensland University of Technology (Australia). Mr Nelson Simbikin (Coffee Research Institute) is thanked for advice and input in the laboratory trials.

REFERENCES

Benjamin A.K., Mopafi I. & Duke T. (2001). A perspective on food and nutrition in the PNG Highlands. In: *Food Security for Papua New Guinea*. (R.M. Bourke, M.G. Allen & J.G. Salisbury eds). Proceedings of the Papua New Guinea Food and Nutrition 2000 Conference, PNG University of Technology, Lae. Canberra, Australian Centre for International Agricultural Research (ACIAR Proceedings No. 99). pp 94-99.

Gray B. & Wylie F.R. (1974). Forest tree and timber insect pests in Papua New Guinea II. *Pacific Insects* 16: 67-115.

Greve, J.E. van S. & Ismay, J.W. eds (1983). Crop insect survey of Papua New Guinea from July 1st 1969 to December 31st 1978. *PNG Agricultural Journal* 32: 1-120.

Marshall, G.A.K. (1956). The Otiorrhynchine Curculionidae of the tribe Celeuthetini (Col.). British Natural History Museum, London 134p.

Marshall, G.A.K. (1957). Some injurious Curculionidae (Col.) from New Guinea. *Bulletin of Entomological Research*. 48: 1-7.

Marshall, G.A.K. (1959). Two weevil pests of coffee in New Guinea. *PNG Agricultural Journal* 12: 44-46.

Moxon, J. (1992). Grey weevil pests of cocoa. *LAES Information Bulletin No. 49*. Keravat, Lowlands Agricultural Experiment Station.

National Pesticide Telecommunications Network. Lambda-cyhalothrin general fact sheet. http://npic.orst.edu/factsheets/l_cyhalogen.pdf Accessed 10/Feb/2006.

Novotny, V., Basset, Y., Miller, S.E., Drozd, P., & Cizek, L. (2002). Host specialization of leaf chewing insects in a New Guinea rainforest. *Journal of Animal Ecology* 71: 400-412.

Szent-Ivany, J.J.H. (1959). Host plant and distribution records of some insects in New Guinea. *Pacific Insects*. 1: 423-429.

Szent-Ivany J.J.H., & Stevens R.H. (1966). Insects associated with *Coffea arabica* and some other crops in the Wau-Bulolo area of New Guinea. *Papua and New Guinea Agricultural Journal* 18: 101-119.

Thistleton, B.M. (1984). Entomology Bulletin: No 30; Oribius weevils. *Harvest* 10: 36-40

Thomas, R.T.S. & Verloop, C.M. (1962). Host plants and distributions of some grey weevil species of the Tribe Celeuthetini in Netherlands New Guinea. *Papua and New Guinea Agricultural Journal* 15: 33-37.

Tomlin, C.D.S. (ed) (1997) *A World Compendium: The Pesticide Manual*, 11th ed. British Crop Protection Council, Farnham, Surrey, UK. pp 300-302.

Waterhouse, D.F. (1997). *The Major Invertebrate Pests and Weeds of Agriculture and Plantation Forestry in the Southern and Western Pacific*. ACIAR Monograph No. 44. ACIAR, Canberra.

Zimmerman, E.C. (1991). *Australian Weevils*. Vol 5. CSIRO, Canberra.

ASSESSMENT OF KAVALACTONES IN KAVA, *PIPER METHYSTICUM* FORST. F., CULTIVARS OF PAPUA NEW GUINEA

Michael Dom

ABSTRACT

Assessment has been made of the kavalactones in eight cultivated varieties of kava, *Piper methysticum*, grown in three locations in Papua New Guinea. A total of forty-seven samples of dried root, stem and peeling from Lae, Madang and the Keravat Germplasm Collection of the PNG National Agricultural Research Institute representing eight cultivars were analyzed by HPLC methods to determine the kavalactones. Three chemotypes are indicated, two identified by Lebot et al (1999) and another that is similar to that in *P. wichmannii*. Kavain, dihydrokavain and dihydromethysticin were found to be the predominate components. The Total KL (%) however is lower than found in kava from other South Pacific countries.

Keywords: Kava, *Piper methysticum*, *Piper wichmannii*, kavalactone, kavain, dihydrokavain, dihydromethysticin, methysticin, yangonin, desmethoxyyangonin.

INTRODUCTION

Kava is a plant from the Piperaceae family and consists of two botanically differentiated species, *Piper wichmannii* C. DC. and *P. methysticum* Forst. f. The latter has been cultivated by people in Oceania for some 3000 years (Lebot 1997) and was first described in 1786 by a botanist traveling with Captain James Cook. Evidence has shown that *P. methysticum* is the sterile, cultivated form while *P. wichmannii* forms the fertile wild population (Lebot and Levesque 1996). New Guinea, Vanuatu and the Solomon Islands are thought to be the centers of origin of the kava plant, where the natural occurrence of *P. wichmannii* and other closely related species is isolated (Lebot et al. 1991).

Kava is a cash crop of several Pacific island nations. Kava die-back disease led exporters to search for alternative sources for production, cultivation and export. This led to an increased interest in kava cultivars grown in PNG. The PNG National Agricultural Research Institute (NARI), as the leading agency for research in agricultural crops, has produced information on the horticultural and agronomic aspects of kava cultivation. However, there had been limited information on the range of cultivars in PNG in terms of chemical components. As well as defining the chemical composition, an additional aim of the paper was to suggest the cause of strength of brew

('kick') reportedly found in the PNG Madang Short kava drink.

Kavalactones (a-pyrone and 5,6-substituted dihydro-a-pyrone) are psychoactive compounds released in a brew made by soaking the masticated or powdered root. The lactones are also present in the stump, stem, peelings and leaves. There are six major kavalactones each having different physiological effects. Studies into the pharmacology of these six kavalactones have been summarized by Hansel (1968) as narcotic (intensifying barbiturate narcosis), analgesic, local anaesthetic, contraction inhibiting and anticonvulsant, antispasmodic and fungistatic towards select species of fungi and streptomyces. Kretzschmar's studies (1970; cited by Lebot et al. 1999) show the psychopharmacology of kavain is characterized by emotional and muscular relaxation, stabilization of the feelings and stimulation of the ability to think and act.

The work here is based on analysis of 47 samples that were received by the NARI Chemistry Laboratory from Keravat, Lae and Madang. Complete descriptions of the growth sites, soil conditions and morphotypes were not available at that time. This study is based on the observed chemotypic variation. Such data is essential for facilitating the selection of superior or commercially desirable cultivars (Lebot et al. 1991).

MATERIALS AND METHODS

The samples were received in four accessions from Keravat (Lon.4° 20' N; Lat.152° 92' E), Lae (Lon.7° N Lat.146° 30' E) and Madang (Lon.6° 30'N; Lat.145° 30' E). The varieties were given local names: Madang Short (MS var.), Madang Tall (MT var.), Manus Green (ManG var.), Manus Pink (ManP var.), Manus Tall (ManT var.), Daru Tall (DT var.), West New Britain (WNB var.) and Kavieng (KAV var.). Samples were received as dry material but were further dried in a forced air draft oven at 105°C. The phytochemical analysis was made by High Performance Liquid Chromatography (HPLC) following the INA Method 101.002 first developed by Shao *et al.* (1998).

About 750 mg (± 0.1 mg) of finely ground stem, peeling, or root material was placed into a 50-ml volumetric flask along with 40 ml of methanol/water (70/30) and sonicated for 60 minutes at room temperature. The flask was allowed to cool and contents diluted to volume with methanol/water (70/30). About 5ml was then filtered through 0.45mm nylon micro filters (Whatman) into a HPLC vial and capped. Kavain was used as the stock standard prepared as for the samples. The literature response factors were used to quantify the other five components. System suitability was ensured for the standards 0.01, 0.04, 0.10 and 1.00 mg/ml having a linear coefficient of 0.9999 and a resolution between desmethoxyyangonin and yangonin of 5.7. Analysis was carried out on a Varian Star Chromatography System Series 9000 consisting of a 9012 SDS, 9100 AutoSampler and a 9065 UV-Vis. A suitable analytical column, Microsorb MV, 5 mm (C-18), 4.6 × 250 mm

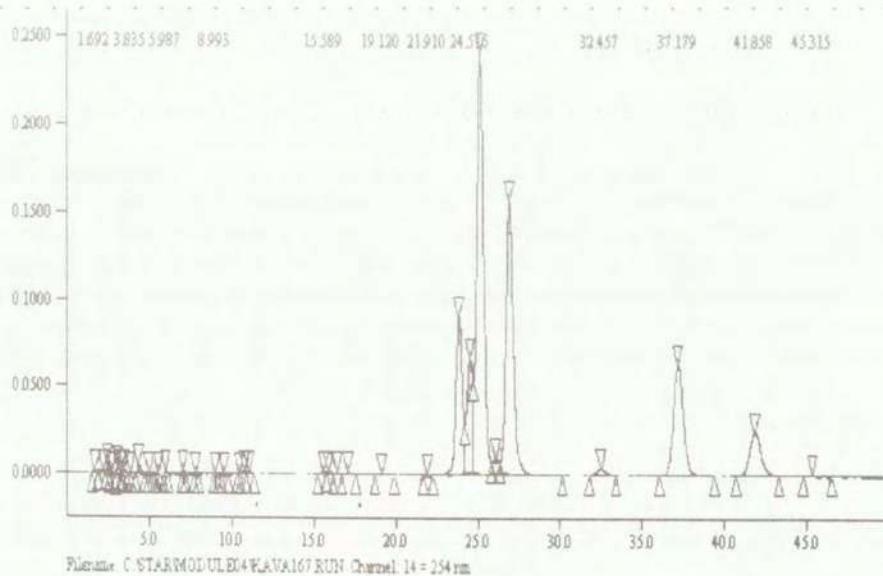
substituted the reported YMCbasic 5 mm (C8). A temperature of 32-34°C was maintained in a water bath in which the column was immersed. Mobile Phase was isocratic acetonitrile: methanol: water: acetic acid (20: 20: 60: 0.1 v/v) at a flow rate of 1.0 ml/min. Injections of 10ml were made using a Valco valve and sample detection was made at 220 nm. Total run time was 45 minutes. Calculation of the components was made as follows:

$$\% \text{ Individual Kavalactone} = \frac{(A)(SR)(FV)(D)(F)(100)}{(W)}$$

Where: A = Peak area response of the kavalactone in the sample.

SR = The response of the corresponding kavalactone reference standard (slope of the calibration plot)

FV = The final volume of the sample preparation (ml).


D = The dilution factor of the sample preparation.

F = The correction factor for quantitation against kavain

W = The sample weight (mg).

HPLC analysis allowed separation of six major kavalactone (KL) components; in order of elution (reverse phase) they are: methysticin (M), dihydromethysticin (DHM), kavain (K), dihydrokavain (DHK), desmethoxyyangonin (DMY) and yangonin (Y). Chromatograph and retention times and response factors used to calculate the percent compositions are in Table 1. Dry extracts were not made as the method assays directly from solution.

Figure 1. A sample chromatogram of kavalactones.

Table 1. Retention Times for HPLC analysis above.

Kavalactone	Retention Times (minutes)	Response Factors
Methysticin (M)	23.847	0.6602
Dihydromethysticin (DHM)	24.516	1.638
Kavain (K)	25.117	1.000
Dihydrokavain (DHIL)	26.892	1.641
Desmethoxyyangonin (DMY)	37.179	0.9329
Yangonin (Y)	41.858	0.9669

* From INA Method 101.002 (Institute for Nutraceutical Advancement 2000)

RESULTS AND DISCUSSION

There were a total of 47 samples; 15 root, 20 stem and 8 peelings. An additional four samples were received in powdered form (labeled 'unknown'). The results of HPLC analysis and the chemical coding and chemotypes are presented in Table 2. Descriptive Statistics were applied to root and stem samples (Tables 3 and 4). Table 5 shows the results of simple linear correlation analysis for the roots and stems. Total Kavalactone (KL) percent variation in the 15 root and 20 stem samples was very large, coefficient of variance of 50.522 and 59.200 respectively. Desmethoxyyangonin had the greatest variance in both root and stem samples and yangonin had the least variance. High DMY content was observed in ManT and ManG and WNB varieties where they account for 43 – 60% of the total KL. Chemotypes of these three cultivars are characteristically low in dihydrokavain and yangonin. In Madang Short root, stem and peelings, kavain and dihydrokavain are almost equally expressed. In general, tested varieties showed higher levels of kavain, dihydrokavain and desmethoxyyangonin reflected in the chemotype codes. Lebot *et al.* (1999) found that environmental factors play an important role in the formation of kavalactones. Such factors include shading (negatively) and high levels of fertilization (positively). Similar correlations were not possible for this work. However, the samples originated from two distinct geographic locations. Lae and Madang are in mainland New Guinea and Keravat is in the Islands region. Keravat in East New Britain is known to have soil of volcanic origin whereas the Lae and Madang soil is alluvial. All locations have high rainfall (>2500mm annually) but wet periods are more regular in Lae and Madang. The plantings were well established in all three locations for five to ten years or longer. Madang samples had three of the highest total KL percent from the peelings. Madang sites grew only MS varieties but these showed two distinct chemotypes (codes: 245-163/613 and 425-163/613).

Samples from Lae were of MT and MS. Lae kava displayed only chemotype C for both varieties grown, MS and MT. There were four samples of unknown origin and two of these were of a different chemotype (code: 425-163/613). Keravat germplasm consisted of all eight varieties and KL percent in these differed significantly at the 95% level. Keravat kava presented three chemotypes.

Overall there are three chemotypes observed here. Chemotype C: 245, 254 and F: 421, 425 have been assigned according to Lebot and Levesque (1989). Chemotype arbitrarily designated Q for codes: 142, 145, 146 are indicative of Vanuatu and PNG collections (Lebot and Levesque 1989). In Lebot *et al.* (1991), Table 1 of *P. wichmannii* and *P. methysticum* germplasms, lists PNG as having 23 wild forms, 4 cultivars and chemotypes; B (521634), C (254613), D (643251) and F (426315). Lebot *et al.* (1999) found that KL percent 'decreases from the root to the stump, the basal stems and the leaves exhibit lower concentrations'. The group also found that 'peelings of the bark had a higher kavalactone content' (Lebot *et al.* 1999). The findings are similar for this work.

In general the appreciated effect [of kava brew] is correlated with high percentages of kavain and lower dihydromethysticin and dihydrokavain (Lebot *et al.* 1999). Chemotype F (426315) is the most appreciated by kava drinkers (Lebot 1990). PNG kava varieties showed high levels of kavain and dihydrokavain almost equally expressed and accounting for up to 78 percent of the Total KL percent. Dihydromethysticin was also prominent and there were lower methysticin and yangonin. Kavain, DHK and DHM are of particular interest. Kavain and DHK both have local anaesthetic properties and DHM has a stronger narcotic effect (Hansel 1968). DHK has a relative analgesic effect stronger by dosage than that of acetylsalicylic acid (aspirin) (Bruggeman and Meyer 1963 in Hansel

1968). The predominance of these three kavalactones may be the underlying cause of the strength ('kick') appreciated by PNG kava consumers. PNG kava varieties however, showed

lower Total KL percent content compared to that found in other kava producing countries.

Table 2. Kavalactone HPLC analysis results of (47) Kava samples displaying chemotypes at three locations.

Lab No.	Variety	Location	Section	Totals (%)	M	DHM	K	DHK	DMY	Y	Code	Chemotype
0143(1)	Madang short	Lae	stem	0.39	6.77	19.28	26.94	33.84	8.61	4.57	245163	C
0143(2)	Madang short	Lae	peelings	2.29	7.71	17.67	26.59	32.30	8.43	7.30	245163	C
0143(3)	Madang short	Lae	roots	6.55	7.10	11.30	31.47	34.50	10.75	4.88	245163	C
0143(4)	Madang short	Lae	peelings	4.69	7.36	13.64	29.68	34.02	9.74	5.57	245163	C
0143(5)	Madang short	Lae	stem	5.40	7.38	11.47	32.72	34.35	9.68	4.40	245163	C
0144(1)	Madang tall	Lae	stem	1.73	8.26	20.07	25.56	33.05	6.76	6.29	254613	C
0144(2)	Madang tall	Lae	stem	0.81	5.07	22.00	18.08	43.31	6.32	5.21	254136	C
0144(3)	Madang tall	Lae	peelings	3.54	8.84	19.07	26.05	30.27	7.33	8.44	245631	C
0144(4)	Madang tall	Lae	peelings	2.96	5.77	23.56	17.10	39.99	6.46	7.12	254316	C
0144(5)	Madang tall	Lae	roots	5.40	7.38	11.47	32.72	34.35	9.68	4.40	245163	C
0145	Madang	Lae	unknown	6.39	5.93	13.95	29.08	41.06	6.38	3.60	245163	C
0403	Madang short	Lae	unknown	3.74	8.33	11.26	37.71	26.33	8.57	7.79	425163	F
0507	Madang short	Lae	unknown	3.03	8.01	12.12	35.03	32.57	7.72	4.56	425613	F
0135 (a)	Madang short	Madang	roots	2.87	6.13	13.10	28.13	38.12	9.15	5.38	245163	C
0135 (b)	Madang short	Madang	stem	1.46	6.87	19.73	23.95	37.98	5.80	5.67	245613	C
0135 (c)	Madang short	Madang	peelings	2.45	6.93	20.11	23.43	35.28	7.11	7.14	245316	C
0139(1)	Madang short	Madang	roots	5.87	8.32	9.22	40.35	29.30	7.92	4.90	425613	F
0139(2)	Madang short	Madang	peelings	9.20	6.50	10.02	35.92	35.12	8.38	4.06	425163	F
0139(3)	Madang short	Madang	stem	2.79	8.08	14.21	34.48	33.22	5.45	4.57	425613	F
0139(4)	Madang short	Madang	stem	3.29	7.99	14.07	34.92	32.67	5.39	4.96	425613	F
0140(1)	Madang short	Madang	stem	2.98	7.50	13.83	34.04	34.26	5.75	4.63	245613	C
0140(2)	Madang short	Madang	peelings	10.47	6.30	9.80	36.21	34.88	8.63	4.19	425163	F
0140(3)	Madang short	Madang	stem	2.62	7.05	15.23	31.61	34.10	6.75	5.27	245613	C
0140(4)	Madang short	Madang	roots	4.30	8.38	9.40	39.79	27.75	8.61	6.08	425163	F
0141(1)	Madang short	Madang	peelings	11.88	6.58	11.06	33.30	35.85	8.28	4.94	245163	C
0141(2)	Madang short	Madang	stem	2.84	8.77	13.71	35.49	30.35	6.30	5.37	425613	F
0141(3)	Madang short	Madang	roots	3.59	9.41	12.68	36.37	30.01	6.52	5.01	425613	F
0141(4)	Madang short	Madang	stem	2.63	8.79	16.69	30.71	32.70	5.32	5.79	245631	C
0142(1)	Madang short	Madang	unknown	2.58	8.28	24.31	23.56	30.56	6.20	7.09	254631	C
0142(2)	Madang short	Madang	stem	3.22	8.84	22.10	23.13	31.50	6.21	8.22	245631	C
0142(3)	Madang short	Madang	roots	4.86	9.17	13.19	32.51	29.23	8.36	7.53	425613	F
3738	Madang short	Keravat	roots	3.86	7.94	9.81	38.00	27.82	10.36	6.06	421563	F
3739	Madang short	Keravat	stem	2.61	8.81	15.59	33.26	30.30	6.00	6.04	425631	F
3740	Manus 'pink'	Keravat	roots	3.95	6.01	9.12	36.69	31.80	9.98	6.60	421536	F
3741	Manus pink	Keravat	stem	1.91	5.78	17.33	26.98	37.36	6.67	5.89	245136	C
3742	Manus tall	Keravat	stem	0.80	12.07	10.36	15.31	7.13	50.42	4.70	146523	Q
3743	Manus tall	Keravat	roots	0.48	11.18	10.84	12.30	7.92	52.38	5.38	146523	Q
3744	Manus green	Keravat	roots	0.64	11.92	8.10	10.59	4.76	60.28	4.36	164523	Q
3745	Manus green	Keravat	stem	0.56	11.45	12.13	21.74	7.13	43.01	4.54	145623	Q
3746	Kavieng	Keravat	roots	3.01	7.84	13.94	29.77	32.44	9.36	6.65	245163	C
3747	Kavieng	Keravat	stem	0.86	7.55	20.58	24.43	35.44	5.94	6.06	245631	C
3748	Madang tall	Keravat	roots	4.93	8.25	9.42	39.94	26.63	10.05	5.70	421563	F
3749	Madang tall	Keravat	stem	2.30	8.45	15.96	32.81	31.46	5.97	5.36	425613	F
3750	WNB	Keravat	roots	1.01	11.86	11.70	14.40	11.63	44.42	6.00	146523	Q
3751	WNB	Keravat	stem	0.72	10.60	12.13	22.16	14.95	34.49	5.67	142563	Q
3752	Daru tall	Keravat	roots	6.00	7.42	11.37	35.52	27.24	11.94	6.52	421563	F
3753	Daru tall	Keravat	stem	3.90	6.04	20.06	24.47	34.28	8.43	6.71	245136	C

Measured at
0.100AUFS

* Lebot et al, 1999 Chemotype coding. 1 = DMY; 2 = DHK; 3 = Y; 4 = K; 5 = DHM; 6 = M. These are not the order of elution by RP-HPLC.

Table 3. Descriptive Statistics Resulting from the analysis of 15 Root samples.

	KL %	DMY (1)	DHK (2)	Y (3)	K (4)	DHM (5)	M (6)
Mean	3.822	17.982	26.220	5.696	30.570	10.979	8.554
Minimum	0.484	6.517	4.756	4.357	10.595	8.097	6.013
Maximum	6.551	60.276	38.115	7.534	40.348	13.942	11.918
Standard Deviation	1.931	18.085	9.969	0.909	10.104	1.758	1.859
Coeff. Of Variation	50.522	100.572	38.020	15.967	33.053	16.010	21.736

Table 4. Descriptive Statistics Resulting from the analysis of 20 Stem samples.

	KL %	DMY (1)	DHK (2)	Y (3)	K (4)	DHM (5)	M (6)
Mean	2.191	11.964	30.468	5.496	27.640	16.326	8.106
Minimum	0.385	5.316	7.126	4.400	15.310	10.365	5.071
Maximum	5.396	50.425	43.312	8.218	35.492	22.101	12.066
Standard Deviation	1.297	13.520	9.510	0.920	5.980	3.641	1.773
Coeff. Of Variation	59.200	113.00	31.213	16.749	21.634	22.304	21.873

Table 5. Simple Linear Correlation analysis of Kavalactones in Root (15 samples) and Stem (20 samples).

Roots Parameter				Stems Parameters			
X	Y	Corr. Coef.	Significance	X	Y	Corr. Coef.	Significance
DMY	DHK	-0.95	**	DMY	DHK	-0.94	**
	Y	-0.30	ns		Y	-0.29	ns
	K	-0.93	**		K	-0.60	**
	DHM	-0.30	ns		DHM	-0.57	**
	M	0.83	**		M	0.78	**
	Totals_%	-0.81	**		Totals_%	-0.46	*
DHK	Y	0.18	ns	DHK	Y	0.22	ns
	K	0.79	**		K	0.39	ns
	DHM	0.40	ns		DHM	0.65	**
	M	-0.91	**		M	-0.92	**
	Totals_%	0.75	**		Totals_%	0.36	ns
	K	0.25	ns		K	-0.22	ns
Y	DHM	0.33	ns	Y	DHM	0.65	**
	M	-0.18	ns		M	-0.11	ns
	Totals_%	0.09	ns		Totals_%	0.12	ns
	DHM	-0.03	ns		DHM	-0.26	ns
	M	-0.73	**		M	-0.21	ns
	Totals_%	0.83	**		Totals_%	0.62	**
DHM	M	-0.15	ns	DHM	M	-0.63	**
	Totals_%	0.03	ns		Totals_%	-0.15	ns
	Totals_%	-0.69	**		M	Totals_%	-0.25
M	Totals_%						

Table values are; Root, 0.6411 and 0.5139: Stem, 0.5614 and 0.4438; for 1% and 5% significance levels

** Significant at 1% and 5% level; ns, not significant

CONCLUSION

Kava, *P. methysticum* cultivated in Lae, Madang and Keravat today display three chemotypes C, F and Q. The last is likely to be a chemotype of wild forms from West New Britain and Manus. There are eight (8) cultivars that are locally identified in the Keravat germplasm collection. Of these cultivars Madang Short variety has been the most successfully produced and enjoyed kava brew. The major psychoactive components indicated for varieties having consumer preference are kavain, dihydrikavain and dihydromethisticin. Although the latter two compounds are considerably more potent, the lower Total (KL%) may be reducing their effect or there may be a modifying or synergistic effect with kavain, changing their physiological actions. This work presents a glimpse of the chemical variety of PNG kava that is now in cultivation but more work needs to be done to further the development of this crop.

ACKNOWLEDGMENTS

The author wishes to thank Elizabeth Ling and Maisan Pahun for assistance in locating and sending literature references from the Keravat library. Thanks also to the NARI Chemistry Laboratory staff and Drs. R. Ghodake, S. Bang, P. Kohun and A. Quatermain for comments, critique and counsel.

REFERENCES

Hansel, R., (1968), Characterization and Physiological Activity of Some Kawa Constituents, *Pacific Science*, Vol. XXII, July pp. 293 –313.

Institute for Nutraceutical Advancement (2000), Kavalactone Assay by HPLC INA Method 101.002, <http://www.nutraceuticalinstitute.com/methods/kava.html>

Lebot, V., (1990) Survey of the genetic resources of *Piper methysticum* Forst. F in Oceania. FAO/ IBPGR Plant Genetic Resources Newsletter, 80:30-32

Lebot, V., (1997), An Overview of Kava Production in the Pacific Islands: what we do know and what we don't know, *J. South Pacific Agriculture*, pp 55 –62, Vol. 4 Nos.1/2.

Lebot, V., Aradhya, M. K., and Manshardt, R. M., *Pacific Science* (1991), Geographical Survey of Genetic Variation in Kava (*Piper methysticum* Forst. f. and *P. wichmannii* C.DC, vol. 45, no. 2:169 –187, University of Hawaii Press.

Lebot, V., Johnston, E., Zheng, Q.Y., McKern, D. and McKenna, D. J., (1999) Economic Botany 53(4) pp. 407 –418, The New York Botanical Garden Press, Bronx, NY 10458-5126 USA.

Lebot, V., and Levesque, J., (1989) The Origin and Distribution of Kava (*Piper methysticum* Piperaceae): A phytochemical approach. *Albertonia (Hawaii)* 5(2).

Lebot, V., and Levesque, J., (1996), Evidence for Conspecificity of *Piper methysticum* Forst. f. and *Piper wichmannii* C. DC., *Biochemical Systematics and Ecology*, Vol. 24, No. 7/8, pp 775-782.

Shao, Y., He, K., Zheng, B. and Zheng, Q.Y., (1998), *J. Chrom. A*, 825, pp 1-8.

SELECTION OF RICE (*ORYZA SATIVA L.*) VARIETIES FOR LOWLANDS RAIN-FED CONDITIONS IN PAPUA NEW GUINEA.

Stanis Malangen and Birte Komolong

ABSTRACT

Four rice (*Oryza sativa L.*) varieties, NR 1, NR 9, NR 15 and NR 16 were provisionally released in 2003 by the National Agricultural Research Institute (NARI) for the lowland areas ranging from 0-1200 meters altitude. They were selected on the basis of grain yield, eating quality and pest and disease resistance from the first season of trials. The varieties were tested by NARI for another two seasons at five different sites in the Madang and Morobe Province. The superior performance of the four NR varieties over the standard varieties TCS 10 and FB91 was confirmed in both seasons. The varieties NR 1, NR 9, NR 15 and NR 16 are recommended for final release to farmers in the Lowlands of PNG based on yield performance and taste.

Keywords: Varieties, released, National Agricultural Research Institute, seasons, performance.

INTRODUCTION

Rice (*Oryza sativa L.*) has many advantages over most of the traditional food crops of Papua New Guinea (PNG). Rice is easy to store, does not perish during transportation to distant locations, consumption of small volumes is enough to satisfy the human appetite compared to the traditional root crops and is considered a novel food. Unfortunately the crop has not integrated well into the farming systems of PNG. Non-availability of suitable varieties (with superior agro botanical and physiochemical traits) and lack of agronomic information have been reported to be the two of the major constraints for rice production in PNG (Sajjad 1995; Sajjad 1998).

Numerous efforts to evaluate introduced varieties suitable for PNG conditions have been accomplished in the past, but only a few of these have been published (Wohuinangu and Kapp 1982). The most predominant work was done by the Department of Agriculture and Livestock at Bubia Agricultural Research Centre, where a limited number of varieties imported from IRRI by the end of 1960, were evaluated across seven sites ranging from Dumpu in the Ramu Valley to Munum in the lower Markham valley. The results of the studies were non conclusive due to lack of information for optimum planting dates for the sites, soil conditions, erratic rainfall, Rice bugs

(*Leptocorisa* spp.) and unsuitable varieties (Sumbak 1977).

Superior and modern varieties with ideal agro-botanical and physico-chemical traits and agronomic information are pre-requisites to developing domestic rice production (Ten 1974). Several promising varieties were identified and recommended for cultivation in PNG by various researchers in the past (Sajjad 1995; Sajjad 1996a; Sajjad 1996b; Sumbak 1977; Wohuinangu & Kapp 1982). These varieties, however, were recommended for release prior to investigating the stability of their performance across varying environments.

A study was conducted to evaluate adaptability of promising rice varieties under different environments in PNG. Based on the results of the first season of trials, four rice varieties were provisionally released for upland cultivation in areas ranging from 0-1200 meters altitudes. The four varieties NR 1, NR 9, NR 15 and NR 16 were selected on the basis of grain yield, eating quality and pest and disease resistance (Wamala 2003 and Waramboi *et al* 2003). Results of the second season of trials were discussed in Okpul *et al*. 2005. This paper reports on the third seasons of multi-location trials and compares performance of promising varieties across all three seasons of multi-location trials.

MATERIALS AND METHOD

Location and Methods

A series of multi-location trials was conducted between 2001 and 2005 at different sites in Madang and Morobe Provinces to evaluate the performance of upland rice varieties across different environments. Trial 1 was conducted at Intoap (Mutzing), Gusap (Ramu Sugar), Usino, Wareo (Finchafen), and Garaina while Trials 2 and 3 were conducted at Intoap, Gusap, Usino, Boana and Daging. Table 1 shows the soil and agro-ecological features of all the sites used during the series of trials.

Soils at the trial sites were moderately fertile with acid to moderately acid soil pH, low organic matter and total nitrogen and phosphorous low but medium to high ratings for Mg and K at most sites. Data for Wareo are not available (Appendix Table A1).

The rice varieties were among 1250 accessions introduced from the International Rice Research Institute (IRRI) since 1960 (Sumbak 1977). From previous trials conducted between 1991 and 1996 initial eight upland rice varieties were selected for the season of multi-location trials. The number of varieties was increased to 10 varieties for seasons 2 and 3 (Table 2).

Table 1. Experimental sites and their agro-ecological features

Sites	Province	Average annual Rainfall (mm)	Seasonality of rainfall (mm)	Average Temperature (°C)	Average Humidity (%)	Soil texture	Altitude (m.a.s.l)
Intoap ^{1,2*}	Morobe	1500-2300	100 - 350	34	84	Sandy loam	200
Gusap ^{1,2*}	Madang	1500-2300	100 - 200	32	83	Clay loam	300
Saussi ^{1,2*}	Madang	3500-4000	200 - 350	33	92	Loamy	300
Boana ²	Morobe	2000-2500	100 - 200	27	90	Silty clay loam	940
Daging ²	Morobe	4000-5000	200-350	29	94	Clay loam	600
Garina ¹	Morobe	1500-2700	100-250	30	85	Clay loam	<600
Wareo ¹	Morobe	2400-3700	200-300	29	94	Clay loam	>600

¹Trial sites in season 1 (2001/2002).

²Trial sites in season 2 and 3 (2003/2004, 2004/2005)

*= Sites common for all three seasons

Table 2. Rice varieties evaluated at five different sites in Papua New Guinea

NARI codes ³	Source	Donor name/ No.	Origin	Plant height
NR 1 ^{1,2*}	IRRI ⁴	IR 19961-23-2-2	Philippines	Short
NR 2 ¹	IRRI	Ayung	Indonesia	Short
NR 4 ^{1,2*}	IRRI	BG 379-2	Sri Lanka	Short
NR 9 ^{1,2*}	NARI ⁵	N6-94	PNG	Medium
NR 11 ²	IRRI	IR 841-1-1-2	Philippines	Medium
NR 13 ²	IRRI	IRAT 104	Ivory Coast	Short
NR 14 ²	IRRI	IRAT 170	Ivory Coast	Short
NR 15 ^{1,2*}	IRRI	Salumpikit	Philippines	Tall
NR 16 ^{1,2*}	IRRI	Azucena	Philippines	Tall
FB 91 ^{1,2*}	Unknown	Finsch Brown 91 (standard)	Finschhafen	Tall
TCS10 ^{1,2*}	TATM ⁶	Taichung Sen 10 (standard)	Taiwan	Medium

¹Varieties evaluated in trial 1

²Varieties evaluated in Trial 2 and 3

³Varieties evaluated in all 3 trials

⁴International Rice Research Institute; ⁵National Agricultural Research Institute;

⁶Taiwanese Agricultural and Technical Mission

Trial design and maintenance

The trial at each site was planted using a randomized complete block design and replicated five times. Planting was done in December and harvested the following year following the normal rainy season (figure 1). About five seeds were sown per hole at a plant spacing of 20 x 20 cm between rows and plants. The plot size was 15 m². At each site inorganic fertilizer was applied at the rate of 100: 50: 50 Kg-ha⁻¹ N, P and K. All P, K and 40 % of N were applied at the time of planting. The two top dressings were applied with N (30 % each) in the form of urea (46 % N) at 25 and 45 days after the planting date. Hand weeding was done twice prior to fertilizer application. The series of trials was harvested at four months after planting. TC Seng 10 (TCS 10) and Finch Brown (FB 91) were used as control varieties.

Data collection and Statistical Analysis

Data were collected from 25 randomly selected hills from each plot representing 1 m² after removing the guard rows. Various plant growth parameters were measured including yield, plant height, panicle length, % spikelet fertility and Thousand Kernel Weight (TKW). Grain yield per plot was measured at 14 % seed moisture content in g and converted to t/ha. Incidence of pest and diseases on different varieties was recorded at each site and assessed using the Standard Evaluation System provided by IRRI (IRRI, 2002a).

First, the results of the multi-location trials of the third season were considered. Data of all sites

were then pooled and ANOVA was used to quantify sources of variation in the data set. The second part of the analysis considered a data set of common sites and varieties across all three seasons. ANOVA was applied to compare mean yield data of seven varieties at three sites across three seasons.

ANOVA was performed using software Genstat[®] version 3.2 for each site and means were separated using Least Significant Difference (LSD) and pooled for the combined results across the five sites.

RESULTS

Third season (2004-2005).

The results for mean grain yield (t/ha) of the ten rice varieties tested in five locations in the third season of multi-location trials are presented in Table 3. A summary of results for the other parameters measured is presented in Table A2 in the Appendix. There were significant differences ($P < 0.01$) between varieties as well as between sites. There was also a significant Site x Variety interaction (Table 4). The mean yield over the ten varieties ranged from 3.62 t/ha (FB 91) to 6.31 t/ha (NR 9) (Table 3). Average yield of the ten varieties was 5.48 t/ha. All NARI varieties performed significantly better compared to TCS 10 and FB 91. There were significant differences between NR varieties in the mean yield data across all sites (Table 3).

Table 3. Mean grain yield (t/ha) of ten rice varieties tested in five locations in Papua New Guinea for the third season (2004-2005)

Variety	Boana	Dagging ¹	Intaoap	Gusap	Sausi	Mean
NR 9	7.07 ^{cz}	7.58 ^{cd}	8.84 ^c	3.26 ^c	4.81 ^{ab}	6.31 ^e
NR 14	7.17 ^c	7.64 ^{cd}	7.85 ^c	1.89 ^a	6.10 ^b	6.14
NR 16	7.44 ^c	6.48 ^{bc}	7.32 ^{bc}	3.06 ^c	6.31 ^b	6.12 ^{cde}
NR 4	7.19 ^c	6.75 ^{bcd}	N/A	3.12 ^c	5.71 ^b	5.93 ^{cd}
NR 15	4.17 ^{ab}	8.25 ^d	7.66 ^c	3.5 ^c	5.37 ^b	5.79 ^{cd}
NR 1	6.90 ^c	6.55 ^{bcd}	7.2 ^{bc}	3.45 ^c	5.59 ^b	5.94 ^{cd}
NR 13	7.07 ^c	6.48 ^{bc}	4.95 ^{ab}	3.08 ^c	5.41 ^b	5.40 ^c
NR 11	5.99 ^{bc}	6.91 ^{bcd}	4.93 ^a	2.81 ^{bc}	4.99 ^b	5.13 ^c
TCS 10	6.71 ^c	5.50 ^b	N/A	3.14 ^c	3.30 ^a	4.92 ^b
FB 91	3.72 ^a	3.52 ^a	3.21 ^a	2.09 ^{ab}	5.56 ^b	3.62 ^a
Mean	6.32	6.57	6.50	2.94	5.32	5.49
% CV	23.9	20.7	23.7	22.3	24.8	

¹The local standard variety at Dagging was Finch Brown while at other sites TCS 10 was used.

²Numbers followed by the same letter are not significantly different at $p < 0.05$ using Least Significant Differences

Table 4. Pooled analysis of variance of grain yield (t/ha) of the ten rice varieties tested at the five sites in Papua New Guinea.

Source of Variation	Degrees of Freedom	MS
Variety (V)	9	15.85**
Site (S)	4	114.19**
S x V	34	5.50**
Residual	172	1.97

** = Significant at the 1% probability level.

Among sites, all varieties at Gusap performed significantly lower than other sites. In individual sites ranking of varieties according to yields was different causing the significant (SxV) interaction, but among the NARI varieties only NR 15 was significantly different to other NARI varieties in Boana and Dagging (lowest and highest) and NR 14 at Gusap. In almost all sites FB 91 (local landrace) had the lowest yield except at Sausi where TC Seng 10 had the lowest yield. At Intoap the variety NR 04 could not be harvested due to heavy lodging and spikelets of TCS 10 had 100% sterility as a result of drought conditions during the reproductive phase. This variety had to be replanted twice as a result of poor germination rates.

Incidents of pests and diseases at trial sites were variable across sites (data not shown). Intoap was free of pests and diseases while Usino showed the highest incidence of pests. Most varieties were affected by the rice bug (*Leptocoris oratorius*) with more severe infestation on NR 01, 11 and 09, stem borer (*Chilo sp.*) and leaf folder (*Cnaphalocrocis mediana*l). Dagging had the highest incidence of diseases among sites where brown spot (*Bipolaris oryzae*) and sheath blight (*Rhizoctonia solani*) were observed on a number of varieties, in particular NR 01, 04 and 09. Brown plant hopper (*Nilaparvata lugens*) and false smut

(*Ustilaginoidea virens*) occurred in low incidence on a few varieties at different sites.

Comparison of results across three seasons

In order to establish how the rice varieties performed across different seasons the yield results of all common sites and varieties across the three seasons were pooled and subjected to statistical analysis. Comparisons across seasons showed that all five NARI varieties performed significantly better compared to the control varieties TCS 10 and FB 91. NR 15 performed consistently well across seasons. The yields for 2003/2004 seasons were the lowest for most varieties (Table 5).

Table 6 shows the mean data across three seasons for other plant growth parameters measured during the series of multi-location trials. Most parameter show significant differences between varieties except for Spikelet fertility (SF). SF ranged between 72.5% in TCS 10 to 83.5% in NR16. NR01 and NR 04 are the shortest varieties while FB 91 grows tall with 151.9 cm. There was little variation among varieties for the Number of Productive Tillers and Panicle Length. FB 91 produced significantly less number of tillers but had the longest panicle among varieties. It also produced the highest Thousand Kernel weight

Table 5. Mean yield (t/ha) of seven rice varieties evaluated at three sites across three seasons in the Lowlands of Morobe and Madang Provinces from 2001-2005.

Variety	Mean yield (t/ha) 2001-2002 ^a	Mean yield (t/ha) 2003-2004 ^a	Mean yield (t/ha) 2004-2005 ^a	Mean ^a	Ranking
NR 15	6.29 ^c	4.27 ^{ab}	5.52 ^c	5.36 ^d	1
NR 1	5.53 ^d	4.45 ^b	5.43 ^c	5.14 ^{cd}	2
NR 9	5.29 ^{cd}	3.92 ^{ab}	5.63 ^c	4.95 ^c	3
NR 16	5.05 ^{bcd}	4.13 ^{ab}	5.56 ^c	4.91 ^c	4
NR 4	4.74 ^{bc}	4.67 ^b	5.25 ^c	4.89 ^c	5
TCS-10	4.50 ^{ab}	3.73 ^{ab}	4.2 ^b	4.14 ^b	6
FB 91	3.97 ^a	3.03 ^a	3.62 ^a	3.54 ^a	7
Mean	5.05	4.03	5.03	4.70	

Numbers followed by the same letters are not significantly different at $p<0.05$ using Least Significant Differences.

followed by NR 15 and NR 16. The number of Days to Maturity was only available from the 2001/2002 seasons. NR 15 reached maturity already after on average 104 days while FB 91 had the longest growth period of 145 days.

DISCUSSION

The last series of multi location trials and the comparisons of yield performance of rice varieties have confirmed that the varieties released provisionally by NARI in 2003 are superior in regards to yield performance compared to the widely distributed variety TCS10 and the local landrace FB 91. Additionally variety NR 4 has emerged as another variety that can be considered for release to farmers.

Consistent with trials in previous seasons (Wamala, 2003; Okpul *et al.* 2005) all NARI varieties produced significantly higher yields compared to the control varieties TCS 10 and FB 91 in 2004/2005. This is confirmed by the mean yield results of the varieties tested in all three seasons (Table 5). Discrepancies in yield potentials of varieties at different locations and in different seasons may be due to genotype x environment interaction caused for example by different times of planting, rainfall or soil types (Sajjad 1995).

The variety FB 91 was the lowest yielding variety throughout the three seasons. The origin of this variety is not known but it is considered a landrace as it has been commonly grown in Finschhafen for a long time. There are three major types of rice recognized worldwide. They are the Indica,

Javanica and Japonica types, each differing in morpho-ecological characteristics. FB 91 shows typical characteristics of a Javanica type rice with low tillering rate, long panicles, tall plant stature and high Thousand Kernel Weights (Table 6) (IRRI 2002b). Sumbak (1977) reported that Javanica type varieties were tall and susceptible to lodging which results in lower yields. Sajjad (1995) also reported a similar trend when comparing FB 91 against Niupela and IAC 165, two Indica types, where the yield of FB 91 was lower.

Among the trial sites, the site at Gusap produced the lowest yields in the 2003/2004 and 2004/2005 season, while the yields at other sites were not much different to each other (Okpul *et al.* 2005, Table 3). Soil characteristics at Gusap are fairly similar to other sites (Table 1) with medium soil pH, medium to high content of extractable bases, cation exchange capacity, low organic matter and available P and N. Low organic matter was also reported in a study by Harteminck (2000) on land management in Ramu Sugar Plantations. Low rainfall at grain filling stage may have affected the yield in the 2003/2004 season at Gusap as reported by (Nass-Komolong 2005) (Figure 1). More rainfall was experienced in the 2004/2005 seasons during the reproductive phase at Gusap (Figure 1). However, as there are no weather data available for other sites it is not possible to draw further conclusions regarding the influence of rainfall on yield performance. Basic weather data should be recorded at all trial sites in future trials.

Pests and diseases are other important factors that may influence yield performance of rice varieties. This has not been studied in detail for the varieties in question. During the trials incidence of pests

Table 6. Mean data for six-plant growth parameters of seven rice varieties evaluated in three locations in Morobe and Madang Provinces from 2001-2005

Variety	PH ¹ (cm)	No. of PT ²	PL (cm) ³	SF (%) ⁴	TKW ⁵ (g)	D to M ^{6,7}
FB 91	152 ^{ab}	8.7 ^a	29.9 ^c	80.6 ^g	34.3 ^c	145
NR 01	83 ^a	18.3 ^d	22.5 ^{ab}	77.3	25.0 ^a	132
NR 04	82 ^a	15.4 ^{cd}	22.1 ^{ab}	76.2	23.1 ^a	134
NR 09	105 ^{bc}	11.8 ^{ab}	21.8 ^a	74.4	23.5 ^a	135
NR 15	113 ^c	14.2 ^{bc}	22.2 ^{ab}	75.0	29.6 ^b	104
NR 16	111 ^c	12.9 ^{bc}	22.6 ^{ab}	83.5	28.0 ^b	113
TCS 10	94 ^{ab}	14.2 ^{bc}	23.9 ^b	72.5	25.1 ^a	133

¹PH – Plant Height; ²PT – Number of Productive Tillers; ³PL – Panicle Length; ⁴SF – Spikelet Fertility; ⁵TKW – Thousand Kernel Weight; ⁶D to M – Days to Maturity

⁷Days to Maturity data are only available from the first season in 2001/2002

^aNumbers followed by the same letter are not significantly different at p<0.05 using Least Significant Differences

^bnot significant at p<0.05

and diseases was recorded but infestation levels varied from site to site and from season to season. Infestation with the Rice bug (*Leptocoris oratorius*) affected a number of varieties such as NR 01, NR 09 and NR 11, which may explain their relatively lower yield at Gusap compared to other sites in the 2004/2005 seasons.

Stability performance established by Okpul *et al* 2005 found that NR 11, NR 13 and NR 14 were responsive to favorable environments. This was confirmed in 2004/2005 when NR 14 was among the highest in fertile sites (Boana) but lower in poor site (Ramu). These varieties could be used by semi commercial farmers who can afford to produce rice using higher inputs such as the use of fertilizer.

Comparison of rice varieties across three seasons showed the superior performance of NR varieties compared to control varieties FB 91 and TCS 10 in regards to yield. In the 1990s the Department of Agriculture and Livestock (DAL) screened about 1,149 exotic genotypes introduced from IRRI as part of a Rice and Grain Research and Development Project among them the varieties NR 13 (IRAT 104), NR 14 (IRAT 13), NR 15 (Salumpikit) and NR 16 (Azucena) (Sajjad 1994a, Sajjad 1994b, Sajjad 1995). Varieties tested in those trials showed generally lower yields. However, Sajjad (1995) reported that the trials were grown under minimum input conditions with no or only one basal fertilizer application and reduced weeding. The varieties NR 15 and NR

16 were either considered for release or for advanced elite selection (Sajjad 1994a; Sajjad 1994b).

Eating quality, milling and physico-chemical characteristics are important factors to be considered before variety release. Sumbak (1977) stated that a lot of varieties tested in the past with high yields were superseded or discarded because of inferior cooking qualities. Waramboi *et al.* (2003) studied the eating quality of the rice varieties used in the first season of multi-location trials. Results showed that among NR varieties, NR 01, NR 16 and NR 09 were preferred over NR 15 and NR 4.

Resistance to major pests and diseases of varieties evaluated in this series of multi-location trials is another important consideration for variety release. However, little is known about levels of resistance among these rice varieties. Previous data are not available and during the multi-location trials varieties were not sufficiently exposed to various pest and diseases for any conclusions on varietal resistance. A small study on resistance of NR 01, 04, 09, 15, 16 and TCS 10 against the Brown Plant Hopper is in the planning stage at the NARI Wet Lowlands Mainland Programme.

In conclusion, the four varieties that were released on a provisional basis in 2003 have consistently produced higher yields compared to the control varieties TCS 10 and FB 91 across different environments. The varieties show a good mixture

Figure 1 Rainfall (mm) in Ramu Sugar during the month of January to May 2004 and 2005

of different maturity times with two early maturing varieties (NR 15 and 16) and varieties with variable plant heights. NR 01 and 09 are short varieties that may give advantages in areas with higher risks of lodging. Consumer preference studies (Waramboi *et al.* 2003) showed that the varieties are well liked by consumers. Based on this information they should be formally released. NR 04 is a short variety similar to NR 01 and 09 in its maturity time and other features. It also produces superior yields but is not as well liked by consumers. This variety may be considered for release if it shows to be superior in other traits such as resistance to pest and diseases. This work is still in progress at the National Agricultural Research Institute.

ACKNOWLEDGEMENTS

Rice and Grain research conducted by NARI is supported under the Public Investment Programme of the PNG government. Assistance from various collaborators, particularly Ramu Sugar Limited, Lutheran Development Services, Markham Valley High School, The Morobe Division of Agriculture and Livestock and Mr John Koinare (Sausi, Madang Province) is gratefully acknowledged. Past and present NARI staff need to be thanked for their contributions in this series of multi-location trials, in particular Mr M.S. Sajjad, Mr. R. Masamdu, Mr. J. Risimeri, Mr. M. Wamala and Mr. T Okpul. We are especially grateful for the tireless effort of J. Waramboi, Mr A. Beko and R. Kauge and the rest of the Rice and Grain team of SATRC Bubia to provide us with valuable technical assistance. Mr Simon Nero, A. Yalu and Bob Mayer are acknowledged for their support with the analysis of trial data and statistical advice.

REFERENCES

Hartemink, A.E. (2000). Sustainable Land Management at Ramu Sugar Plantation: Assessment and Requirements. ACIAR Proceedings, No. 99. pp 344-364.

IRRI. 2002a. *Standard Evaluation System of Rice (SES)* International Rice Research Institute, Los Banos, Philippines.

IRRI. 2002b. *Acronyms and Glossary of Rice Terminology*. Rice Knowledge Bank [Online]. Available by International Rice Research Institute (accessed 16/02/2006 8.30 am).

Nass-Komolong, B. 2005. *Rice Progress Report No. 5*. National Agricultural Research Institute, Lae, Papua New Guinea.

Sajjad, MS. 1994a. *Salient features of activities and accomplishments of breeding of modern high yielding rice varieties for lowland, upland, high altitude areas with cool climate and acid soils (P deficient) ecosystems and development of agronomic practices for lowland and upland ecosystem of Papua New Guinea*. Unpublished Report. Department of Agriculture and Livestock, Food Management Branch, Port Moresby.

Sajjad, MS. 1994b. *Development of modern upland varieties, with superior milling and physio-chemical traits for PNG*. Rice Breeding Research Bulletin. Department of Agriculture and Livestock, Food Management Branch, Port Moresby, unpublished.

Sajjad, MS. 1995. Development of modern upland rice (*Oryza sativa* L.) varieties, with superior milling and physico-chemical traits, for Papua New Guinea. *PNG Journal of Agriculture, Forestry, and Fisheries* 38:22-30.

Sajjad, MS. 1996a. ER3, an excellent rice variety for the lowlands of PNG to substitute Sunlong rice. *Didimag Newsletter* 28:19.

Sajjad, MS. 1996b. KK15-36-C and Ayung, two modern high yielding rice varieties for irrigated lowlands in Papua New Guinea. *International Rice Research Notes* 21:2-3.

Sajjad, MS. 1998. *Salient features and accomplishments of rice breeding (ecosystem-oriented and agronomic research. A component of Food Management Branch of DAL 1991-1996*. Department of Agriculture and Livestock, Port Moresby.

Sumbak, JH. 1977. Rice Experimentation in Papua New Guinea. *Harvest* 4:2-4.

Ten, H. H (1974). Possibilities of increasing rice production in Papua New Guinea. A Report of the Food and Agriculture Organization of the United Nations. Department of Agriculture, Stock and Fisheries, Port Moresby, Papua New Guinea

Wamala, M. (2003) Four recommended Upland Rice Varieties for Lowlands Climates. NARI Extension Booklet No. 6. National Agricultural Research Institute, Lae.

Waramboi, J.G., M.S. Sajjad, A. Beko, and R. Masamdu. 2003. Eating quality of promising rice varieties evaluated at several locations in Papua New Guinea. *PNG Journal of Agriculture, Forestry, and Fisheries* 46:41-44.

Wohuinangu, J.S., and J.M. Kapp. 1982. An overview of rice research in Papua New Guinea, p. 396-407, In R. M. Bourke and V. Kesavan, eds. *Proceedings of the second Papua New Guinea foods crops conference.*

Part 2. Department of Primary Industry, Port Moresby.

APPENDIX

The Dagging and Gusap sites were tested in (2002-2003) season while the Boana, Intoap and Sausi site sample were tested for the (2004-2005) season.

Table 1. Soil Analysis Results

Location	pH	Extractable Bases				CEC (me%)	Olsen P (mg/kg)	Organic C (%)	Total N (%)	Particle size %		
		Ca	Mg (me %)	K	Na					sand	silt	clay
Boana	4.3*	13.9	0.9	0.05	0.09	29.7	4.3	7.6	0.4	29	27	44
Dagging	5.8	16.5	7.21	0.21	0.15	34.8	5.9	2.73	0.29	7	39	54
Intoap	6.3	17.9	9.88	0.73	0.35	18.7	25.4	1.52	0.14	36	39	25
Gusap	6.0	15.5	5.24	0.87	0.14	23	20	2.54	0.2	21	30	49
Sausi	5.4	12	9.7	0.14	0.05	44.2	1.6	2.38	0.2	31	29	40
Critical values	<5.5	<5.0	<1.0	<0.3	>0.7	<6.0	<5.0	<3.0	<0.3			

* Values lower than the others

Soil samples were analyzed by National Agricultural Chemistry Laboratory (KilaKila) Using methods NACL-Standard Methods

Table 2. Means of various growth parameters of ten varieties across five sites in 2004/2005 season

Variety	PH ¹ (cm)	No. of PT ²	SF (%) ³	FLA (cm ²) ⁴	TKW ⁵
NR 1	86.5	21.06	69.47	33.3	N/a ^b
NR 4	84.1	17.08	74.15	32.5	N/a
NR 9	121.8	13.44	76.94	69.2	N/a
NR 11	76.2	16.14	78.69	39.6	N/a
NR 13	129.0	9.00	77.67	83.1	N/a
NR 14	65.56	18.06	72.51	36.6	N/a
NR 15	122.3	16.52	75.76	51.5	N/a
NR 16	117.3	12.82	85.10	55.7	N/a
TCS 10	98.6	15.10	65.88	45.4	N/a
FB 91	167.9	8.74	83.79	83.1	N/a

¹ PH – Plant Height; ²PT – Number of Productive Tillers; ³SF – Spikelet Fertility;

⁴ FLA – Flag leaf area; ⁵TKW – Thousand Kernel Weight; ^bnot available – data not collected in 2004/2005 season

PREVALENCE OF ANTIBODIES TO LEPTOSPIRAL SEROVARS IN FARM RUMINANT ANIMALS IN THE MARKHAM VALLEY, PAPUA NEW GUINEA

Andy K. Yombo¹, M. A. Samad² and S. Reid³

ABSTRACT

A study on the prevalence of antibodies to leptospiral serovars in adult farm animals was carried out in vaccinated ($n = 47$) and non-vaccinated ($n = 47$) cattle, and non-vaccinated sheep ($n = 21$) and goats ($n = 39$) in the Markham valley of Papua New Guinea (PNG) during the period between June and July 2006. Sera were separated from all the randomly selected animals and subjected to the Microscopic Agglutination Test (MAT) against a reference panel of 22 live leptospira serovars. A titer of (31:400) was considered as positive and accordingly 12.76% vaccinated as well as 17.02% non-vaccinated cattle had positive titer to leptospira infection. This indicates leptospirosis is prevalent in PNG and vaccination has limited role in immune response. This study also confirms hardjo, tarassovi and topaz as the predominantly occurring leptospiral serovars in ruminant food animal populations with topaz as a serovar never previously recorded in PNG. The seroresults of the tested sheep and goats showed none had positive titer (31:400) to leptospirosis. This indicates small ruminants currently may not be important host of leptospirosis in PNG. It may be concluded from the results of this study that leptospirosis is an important disease in ruminant farm animal herds in the Markham valley of PNG which needs attention for further study on its zoonotic aspects and control in human and animal populations.

Keywords: Ruminant, leptospirosis, serovars, Microscopic Agglutination Test (MAT)

INTRODUCTION

Leptospirosis is a worldwide bacterial zoonotic disease, caused by Spirochetes of the genus *Leptospira* that affects humans and a wide range of animals, including mammals, birds and reptiles. All the pathogenic leptospiroses were formerly classified as members of the species *Leptospira interrogans*, however the genus has recently been recognized and pathogenic leptospiroses are now identified in several species of leptospira (Yasuda *et al.* 1987; Ramadass *et al.* 1992). Internationally there are more than 200 distinct leptospiral serovars recognized within the seven species of pathogenic leptospira (Marshall and Manktelow, 2002) and these are arranged in 23 sero-groups (Veloso *et al.* 2000). Serovars are identified based on antigens on the surface of the organism (Bolin 2003).

A recent study in Trukai farm has confirmed the occurrence of 15 leptospiral serovars and established that hardjo as the dominant serovar maintained in beef herds in Papua New Guinea

(PNG) (Wai'in *et al.* 2003). Sub-optimal fertility is an ongoing problem in beef herds and the role of leptospirosis in sub-fertility is not clear in PNG. Although Trukai uses a bivalent vaccine regularly containing the serovars hardjo and pomona as antigens, the problems often persist, which might be due to either leptospirosis or other factors. Diagnosis of leptospirosis can be broadly divided into those that detect bacteria, their antigens or genomic material and those that detect antibody of the infecting bacteria. A variety of serological techniques are available for diagnosis of leptospirosis like Microscopic agglutination test (MAT), Enzyme linked immunosorbent assay (ELISA) and the fluorescent antibody test (FA). Among the DNA based assays the polymerase chain reaction (PCR) test is used to detect leptospiral DNA from tissues or body fluids in clinical cases. In general the PCR test has specificity and reliability but can not determine the infecting serovar and the process can be exquisitely sensitive to contamination with exogenous leptospiral DNA and therefore maybe prone to false-positive reactions. The MAT therefore remains the only serological assay

¹ Ex-PGD Student, Department of Agriculture, University of Technology, Lae 411 Morobe Province PNG
Present Address: Numundo Plantation P.O Box 26 Kimbe WNBP PNG email: kimbbevet@online.net.pg

² Professor, Department of Veterinary Medicine Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.

³ Senior Research Fellow, School of Veterinary and Biomedical Sciences, Murdoch University, WA 6150 Australia

widely accepted as capable of producing serovar-specific results (Smith *et al.* 1994; Cumberland *et al.* 1999; O'Keefe 2002). This paper describes the sero status of leptospiral serovars in vaccinated and non-vaccinated beef cattle and non-vaccinated small ruminant farm animals in PNG.

MATERIALS AND METHODS

Cattle (cows) destined for the slaughter house from Trukai farm (vaccinated against leptospirosis with serovar hardjo and pomona) and Markham farm (non-vaccinated) were randomly selected for this study. Forty seven cows from each farm were selected for blood collection. The sheep (n=21) and goats (n=39) were also randomly selected from the Department of Agriculture and Livestock demonstration flock at Erap for this study. All the selected small ruminant animals were adults and sex was not considered. Blood samples of at least 10mls in sheep and goats were collected from the jugular vein with vacutainers and a similar volume of blood was collected from cows slaughtered at the abattoir. Sera were separated from blood clots by centrifugation as per conventional method and stored in sterile vials at -20 °C until shifted to the testing laboratory. The samples were then packed and sent to the WHO / FAO / OIE Leptospirosis Reference Laboratory in Brisbane for the microscopic agglutination test (MAT). Each serum sample was tested for antibodies to 22 live leptospiral serovars as described by Stallman (1984) with some modifications. The serovars included: (1) Pomona, (2) Tarassovi, (3) Celledoni, (4) Australis, (5) Robinsoni, (6) Kremastos, (7) Medanensis, (8) Cynopteri, (9) Bataviae, (10) Javanica, (11) Shermani, (12) Hardjo, (13) Grippotyphosa, (14) Copenhageni, (15) Zanoni, (16) Canicola, (17) Szwajizak, (18) Bulgarica, (19) Aborea, (20) Djasiman, (21) Panama and (22) Topaz.

MODIFIED TEST PROCEDURE

Doubling dilutions of the sera from 1: 50 to 1: 6400 were prepared in 96 well microtiter plates using phosphate buffered saline (PBS) pH 7.4. An equal volume of live leptospiral culture containing approximately $2-4 \times 10^8$ cells / ml was added to each dilution. After 90 minutes at 30 °C, the trays were examined by dark filled microscopy for agglutination of leptospiral cells. The degree of agglutination was assessed in terms of the proportion of free leptospires. The reported titer was the reciprocal of the highest dilution of serum that agglutinated at least 50% of cells for each serovar used; as compared with the control culture diluted at 1: 2 PBS. A single titer of $^3 1: 400$ was accepted as the cut off value for this study and was considered as positive. The results were analyzed in terms of percentage, and the difference in leptospiral infection between vaccinated and non-vaccinated cattle and small ruminants was analyzed.

RESULTS AND DISCUSSION

The present study on the comparative leptospiral antibody prevalence in vaccinated and non-vaccinated cattle and small ruminants was carried out for the first time in PNG. Wai'in *et al.* (2003) reported the prevalence of leptospiral serovars in only non-vaccinated cattle from PNG. The overall prevalence of leptospirosis in ruminant farm animals is presented in Table 1.

It appears that there is no significant difference on the overall sero-prevalence of leptospiral infection between Trukai and Markham farms. Of the cattle tested 25.53 % of cows from Trukai and 27.66% from Markham farm did not demonstrate any antibodies. There was however, a slightly high number of suspect (1:50-1:200) animals on Trukai

Table 1. Seroprevalence of leptospirosis in adult farm ruminant animals

MAT titer	Interpretation	Sero-results in different farms, No. (%)			
		Trukai farm Cattle (n = 47)*	Markham farm Cattle (n = 47)	DAL Erap Farm **Sheep (n = 21)**	Goats (n = 39)**
< 1: 50	Negative	12 (25.53)	13 (27.66)	12 (57.14)	35 (89.74)
1:50-1:200	Suspect	29 (61.70)	26 (55.32)	09 (42.86)	04 (10.26)
? 1: 400	Positive	06 (12.76)	08 (17.02)	0	0

farm (61.70%) compared to Markham farm (55.53%). The elevated titers from Trukai may be the result of the vaccination program undertaken in the farm and a valid analysis was not possible in this study. However, the Markham farm had a high number of positive ($\geq 1:400$) animals (17.02%) compared to Trukai farm (12.76%). In general high titers are suggestive of recent clinical disease and this work indicates Markham farm may have problems. Between the small ruminants, goats (89.74%) had negative titers for leptospira antibodies compared to sheep (57.14%). However, leptospira is widespread in sheep and goats with suspect antibody titers of (42.86%) and (10.26%) respectively. There is no evidence to suggest sheep and goats are reservoir hosts for hardjo and tarassovi, the main serovars responsible for leptospirosis in cattle.

The results on the prevalence of antibodies to leptospiral serovars in vaccinated and non-vaccinated cattle is shown in Table 2. It appears that the PNG cattle had leptospira antibody titer at different levels against 12 serovars. However, the positive level of antibodies was only found against hardjo (8.51%), and tarassovi (2.13%) and topaz (2.13%) serovars respectively in vaccinated cattle, whereas non-vaccinated cattle had positive titer only against hardjo (14.89%) and tarassovi (2.13%). The dominance of hardjo, szwajizak and tarassovi in PNG cattle has been reported by

Wai'in *et al.* (2003). Of the dominant serovars, *L. interrogans* topaz has not been screened before.

It is possible for cross reactions to occur among serovars with similar antigenic component at higher titers but this study was not able to determine cross reactivity. A positive result indicates exposure of animals in the herd to infection, but there are no published data available at present, which allow correlation of antibody level with the probability of active versus chronic infection. Nevertheless the results presented here confirm that exposure to infection is widespread in the unvaccinated cattle herds in PNG cattle. The Trukai cattle were vaccinated against hardjo and pomona serovars but the antibody detected only against hardjo, not against pomona serovar. This may be due to several factors including negligible immune response and the varying effect on the host with the inoculated antigen which occurs due to relatively low initial development of agglutinating antibody titers. The low immune response however does not mean the absence of the antibodies but the serological test employed merely could not detect the pomona antibodies. Although, a high cut off titer ($\geq 1:400$) was used for this study and Trukai vaccinated against leptospirosis, antibodies to predominantly occurring serovars in the two cattle farms are essentially the same.

Table 2. Prevalence of *Leptospira* serovars in vaccinated ($n = 47$) and non-vaccinated ($n = 47$) beef cattle detected by MAT

Serovars	MAT titer with No. of cases						Total positives ($\geq 1:400$) No. (%)	
	1: 50		1: 100		1: 200			
	V	NV	V	NV	V	NV	V	NV
Hardjo	9	3	8	7	2	7	3	5
Szwajizak	9	13	6	10	5	-	7	7
Arborea	4	2	1	-	-	-	-	-
Topaz	7	8	8	4	3	-	1	-
Kremastos	1	6	5	3	-	-	-	-
Tarassovi	8	5	3	6	-	2	-	-
Medanensis	7	5	2	3	3	2	-	-
Pomona	4	-	-	2	-	-	-	-
Bataviae	2	1	1	-	-	-	-	-
Australis	-	1	1	-	-	-	-	-
Shermani	2	-	-	-	-	-	-	-
Panama	-	-	-	2	-	-	-	-
Total							6 (12.76)	8 (17.02)

V = Vaccinated with serovars hardjo and pomona. NV = Non-vaccinated. - = Negative

The prevalence of antibodies to leptospiral serovars in small ruminant animal species is presented in Table 3. Although none of the sheep and goats showed positive level of antibody titer (31: 400) against all tested serovars, the suspected level of antibodies (1: 50 - 1: 200) was detected against arborea and topaz serovars. The result shows that three (14.29%) and six (28.57%) sheep had antibodies to arborea and topaz, respectively, whereas only topaz serovar was recorded in four (10.26%) goats (Table 3).

Although more works needs to be done topaz seemed to be a dominant serovar maintained in ruminant farm animals in PNG.

This result could not be compared due to lack of similar inland reports on leptospirosis in small ruminants from PNG. Elsewhere however, Batra *et al.* (1990); observed pomona as a dominant serovar in Haryana. Ciceroni *et al.* (2000) documented catellonis as the highest serovar in South Tyrol and in an earlier study in South-East Bolivia Ciceroni (1992) reported poi as the dominant serovar in sheep and goats. A recent review by Levett (2001) observed pomona and hardjo as dominant serovars in sheep.

This variation in dominance might be due to the varying epidemiological and maintenance-host relationship; characteristic of the agro-ecological systems in different parts of the world. Data on clinical leptospirosis in food animals and its significance on productivity is scarce in PNG. However, this work confirms earlier studies by Wai'in *et al.* (2003) that leptospirosis is prevalent in PNG beef cattle herds. There are 15 (Wai'in, *et al.* 2003) leptospira serovars known to be prevalent in cattle. In addition this work confirms *L. interrogans* topaz as a new serovar never previously recorded in PNG. The results also indicate small ruminants may not be important hosts of hardjo and tarassovi the main serovars responsible for clinical leptospirosis in PNG. There

is a significantly high proportion of cattle with active infection in Markham farm compared to Trukai farm.

Further work is required to determine the source and extend of leptospira infection in animal and human populations and to determine the role of vaccine in the control of leptospirosis in experimental and field conditions in PNG.

ACKNOWLEDGEMENTS

The authors wish to acknowledge Dr. Nime Kapo and National Agriculture Quarantine and Inspection Authority's Veterinary field staff, in liaising with producers and collecting the samples. The generous assistance of producers in the three farms whose herds were included in the study is also acknowledged. Thanks are also extended to Professor Barry Norton of the ACIAR for providing fellowship to the first author for post-graduate studies in the Department of Agriculture, PNG University of Technology and also to Dr. Lee Smythe (Chief Scientist) of the WHO /FAO/OIE Leptospirosis Reference Laboratory for conducting the MAT test.

REFERENCES

Batra, H. V., Chandiramani, N. K., and Usha, M. V. (1990). Prevalence of leptospirosis in farm animals in Haryana. *Indian Journal of Animal Sciences*, 60: (7) 55 – 760.

Bolin, C. A., (2003). Diagnosis and control of bovine leptospirosis. Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, Proceedings of the 6th Western Diary Management Conference, March 12-14 Reno USA

Table 3. Leptospira serovar status in small ruminants

Serovars (n = 22)	Animals species	No. of animals tested	No. of animals with antibody titer		
			1: 50	1: 100	Total, No. (%)
Arborea	Sheep	21	2	1	3 (14.29)
	Goats	39	0	0	0
Topaz	Sheep	21	5	1	6 (28.57)
	Goats	39	4	0	4 (10.26)

n= No. of Serovars tested

Ciceroni, L., Lombardo, D., Pinto, A., Ciarrocchi, S., and Simeoni, J. (2000). Prevalence of antibodies to leptospira serovars in sheep and goats in Alto Adige-South Tayrol. *Journal Veterinary Medicine Series B* (47) 3 217

Ciceroni, L., Bartoloni, H., Pinto, A., Gugliemetti, P., Valdez, V.C., Gamboa, B.H., Roselli, M., Giannico, F., and Paradisi, F. (1997). Serological survey of leptospiral infections in sheep, goats and dogs in Cordillera Province, Bolivia. *Journal of New Microbiology* (20) 1 77-81

Cumberland, P., Everard, C. O. R., and Levett, P. N. (1999). Assessment of the efficacy of IgM – ELISA and Microscopic Agglutination Test (MAT) in the diagnosis of acute leptospirosis. *American Journal of Tropical Medicine & Hygiene* 61 (5) 731 – 734.

Levett, P. N. (2001). Leptospirosis, *Clinical Microbiology Review*, 14: (2) 296-326

Marshall, R. B., and Manktelow, B. W. (2002). Fifty years of leptospira research in New Zealand – a perspective. *New Zealand Veterinary Journal*, 50: 61 – 63.

O'Keefe, J. S. (2002). A brief review on the Laboratory diagnosis of leptospirosis. *New Zealand Veterinary Journal*, 50: (1) 9 – 13.

Ramadass, P., Jarvis, B. D. W., Corner, R. J., Penny, D., and Marshall, R. B. (1992). Genetic characterization of pathogenic *Leptospira* spp. by DNA hybridization. *International Journal of Systematic Bacteriology*, 42: 215 – 219.

Smith, C. R., Ketterer, P. J., McGowan, M. R., and Corney, B. G. (1994). A review of laboratory techniques and their use in the diagnosis of leptospira interrogans serovar hardjo infection in cattle. *Australian Veterinary Journal*, 71: (9) 290 – 294.

Stallman, N. D. (1984). International Committee on Systematic Bacteriology. Sub-committee on the taxonomy of leptospira. *International Journal of Bacteriology*, 34: 258 – 259.

Veloso, I., Lopes, M.T.P., Salas, C. E., and Moreira, E. C. (2000). A comparison of three DNA extractive procedures with leptospira for polymerase chain reaction analysis. *Mem Inst Oswaldo Cruz, Rio de Janeiro*, 95 (3) 339-343.

Wai'in, P., Robertson, I., Reid, S., Feinwick, S., and Smythe, L. (2003). The Epidemiology of Leptospirosis in PNG. *Proceedings of the 2nd Australia/Asia/Oceania CVA Workshop & Meeting 28th October -2nd November, Lae International Hotel, Lae PNG.*

Yasuda, P.H., Steigerwalt, A. G., Sulzer, K. R., Kaufman, A. F., Rogers, F., and Brenner, D. J. (1987). Deoxyribonucleic acid relatedness between serogroups and serovars in the family *Leptospiraceae* with proposals for seven new *Leptospira* species. *International Journal of Systematic Bacteriology*, 37: 407 – 415.

YIELD OF FOUR VARIETIES OF RICE (*Oryza Sativa L.*) IN TWO SOIL TYPES AND CONTRASTING AGROECOLOGICAL ZONES

Dr. Muhammad Muneer

ABSTRACT

Field experiments were conducted to evaluate soil properties and the yield performance of rice in two agro-ecological zones of Morobe province, Papua New Guinea. Study shows that with the current practice of low input and subsistence farming of the province, soil nutrients was not a major impediment for rice cultivation. However, yield had been affected by the moisture supply as a result of different mechanical and physical properties of soils in these two agro-ecological zones. The average grain yield of 2.8- 4.7 t/ha suggests that both regions have the potential to grow rice and is capable to meet the current demand of the province.

Keywords: Rice, soil types, agro-ecological, zones, Markham valley.

INTRODUCTION

Morobe province is one of the twenty provinces of Papua New Guinea (PNG) that occupies 33,525 km² in the north of the country (Fig. 1). Population of the province is 3,07,000 where banana (*Musa* cultivars), sweet potato (*Ipomoea batatas*), and taro (*Colocassia*) are the major staples. While these are the most important crops consumed, rice has quickly become popular for many people, both in the rural and urban areas of the province. Despite the demand, very little rice is produced locally and almost all the rice consumed is imported from overseas, resulting in the spending of large amounts of foreign exchange by the government (Manning 1998). Therefore, government of PNG and many non-governmental organizations are promoting domestic production of rice in order to become self reliant and to ensure food security for the households. This has achieved limited success and has never exceeded 2% of the country's requirements (FAO 2000).

In the province two kinds of cropping systems are practiced, namely the cash crops like coffee (*Coffea spp.*), cocoa (*Theobroma cacao*), coconut palm (*Cocos nuerfera*), and the subsistence agriculture which produce staple crops. Almost all of the 25% of the arable land of the province is being used to produce both the cash and traditional food crops where yield is depended on the inherent soil fertility and available moisture supply (Hanson *et al.* 2001). With this system of agriculture, however, yield is low. Therefore, to increase yield, since 1950, much of the research

carried out was focused on the land use and nutrient status of cash crops (Baseden 1960; van Wijk 1959; Fahmy 1977). Significant research on nutrient deficiencies in traditional food crops started only in the 1970s (Hartemink and Bourke 2000; Hartemink *et al.* 2000). As rice was not considered a major staple it received little or no attention and is cultivated only in a few isolated locations.

It is well known that crop growth and yield would largely be determined by the climate, biological, and edaphic factors of the region. This study investigated soil properties, particularly soil chemical properties on the yield performance of four rice cultivars under low input conditions in two agro-ecological zones in Morobe province. Soil properties have been used to provide an overall assessment of soil fertility, noting any apparent deficiency of nutrient elements that might affect crop growth and yield. In evaluating rice yield, rainfall which is one of the dominant characteristics of the region also was taken into consideration. It is hoped that findings of this investigation would entail the land manager's, particularly smallholder farmers, to understand the soil's potential and limitations, and the role of climate on rice yield.

MATERIALS AND METHODS

Climate of the experimental sites

Two sites were selected for the study where agriculture is dominated by the traditional food crops. One is at the University of Technology (Unitech) experimental farm (6°39' S, 147°00' E and

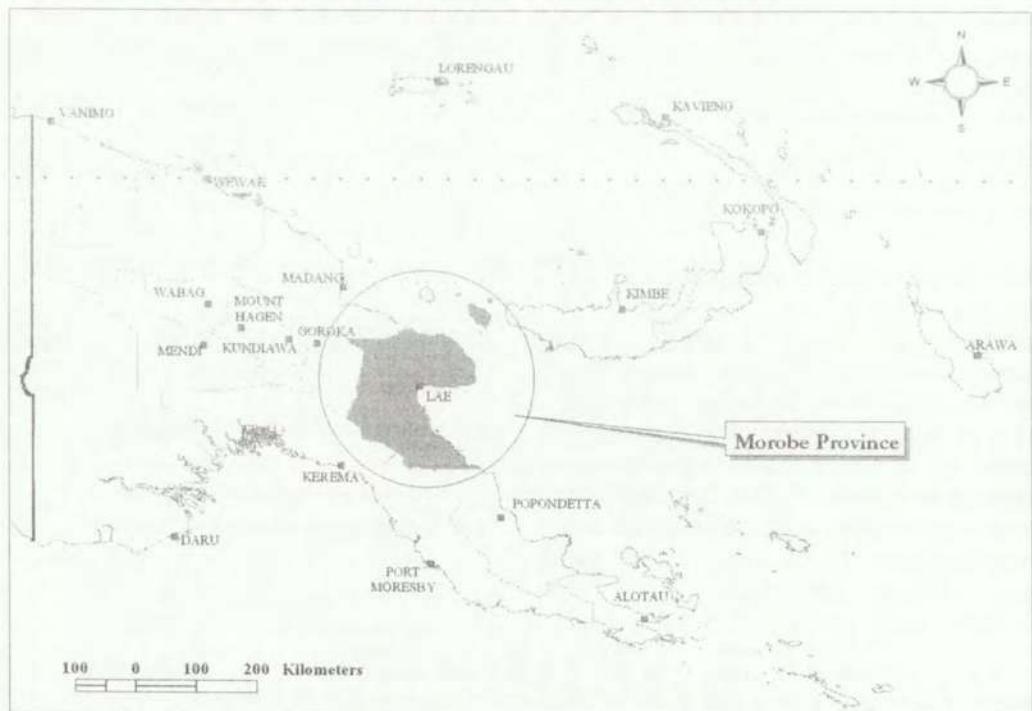
Department of Agriculture, University of Technology, Lae, Papua New Guinea.

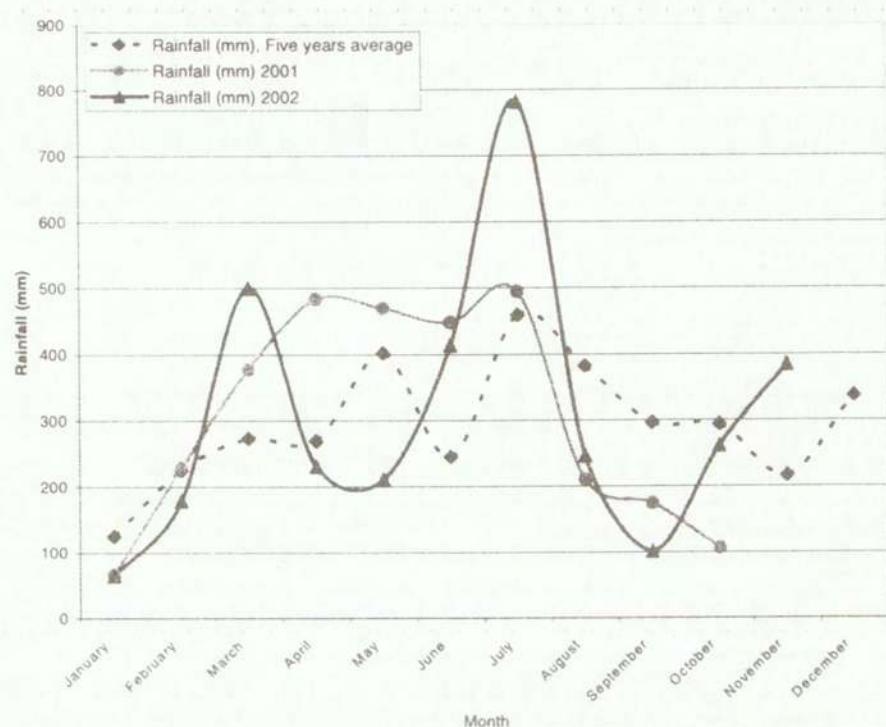
65 m.a.s.l.), Lae the capital of Morobe province and the other in Trukai experimental farm at Markham valley (6°31' S, 146°29' E and 112 m.a.s.l.) which is about 60 km North West of Lae (Fig. 1). Unitech represents wet coastal areas and Markham valley represents the drier interior valley of the province.

The climate of both experimental sites is tropical humid and classified broadly as Koeppen Af (Ford 1974) i.e. rainy tropical climate. It has two main rainy seasons with short but important transition periods between them. The north-west season, influenced by the perturbation belt and occurring from December to late March. The south-east season, which occurs from May to October, when south-east trade winds dominate the weather.

Unitech receive rainfall in south-east season and have the greatest incidence of long wet spells unlike other wet places in the province. Whereas, Markham valley receives most of its rainfall during north-west season. The annual rainfall at Unitech and at Markham valley is about 3452 mm and 1139 mm respectively (five year average) (Figs. 2 and 3). Annual evaporation (US Class A pan) is 2139 mm at Unitech and 2200 mm at Markham valley. At Unitech rainfall exceeds evaporation whereas at Markham valley evaporation exceeds rainfall. Temperature at both experimental sites are constantly high, with mean maximum readings of 28-34 °C and mean minimum readings of 20-25 °C. Temperature range throughout the year is usually small, 1-4 °C for the mean and 3-9 °C for the extreme

of monthly maxima and minima. Daily range is usually at least double that of the average monthly range (Bleeker 1983a).


Soil and land use of the experimental sites


Soil at Unitech is derived from alluvial deposits whereas at Markham valley it is derived from colluvial and alluvial deposits (Bleeker 1983b). According to USDA Soil Taxonomy (1999) and FAO/UNESCO (1988) Unitech soil is classified as *Typic Tropofluvents* and *Eutric Fluvisol* whereas Markham valley soil is classified as *Typic Troporthents* and *Haplic Phaeozems* respectively. Soil at Unitech is well drained and has moderate slope 10-20°, whereas, soil at Markham valley is moderately to poorly drain and is steeply sloping > 20°. The natural vegetation at Unitech farm is mainly savanna grassland (*Imperata cylindrica*) with scattered shrubs while Markham valley has predominantly grassland vegetation (*Themeda australis*) with scattered trees. Taro is the dominant crop grown at the farm, whereas, banana and sweet potatoes are common at Markham valley.

Field Establishment and Maintenance

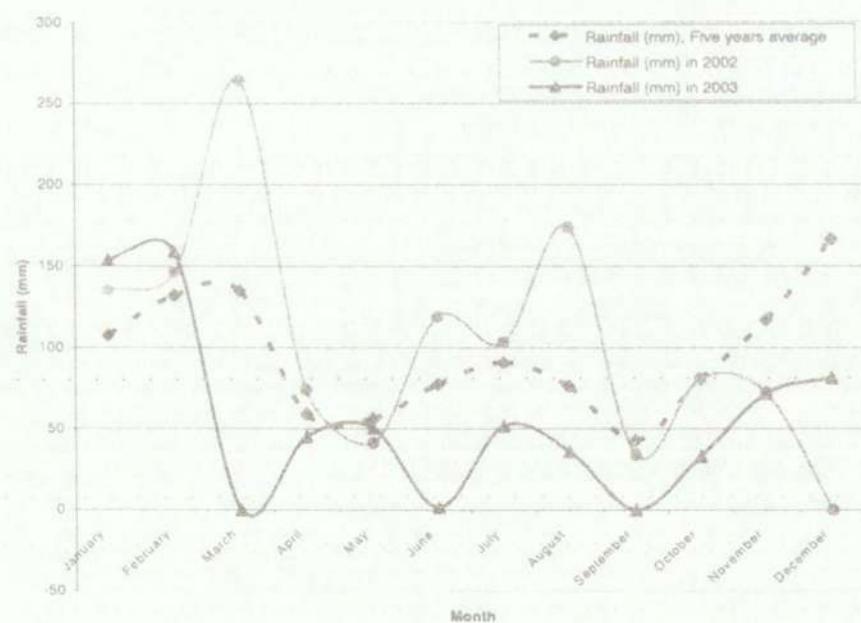

A total of four experiments were conducted over 3 year period having two at each location. At Unitech, experiments were conducted during May to October in 2001 and 2002 whereas at Markham valley during December to May in 2002 and 2003. Land was kept fallow between the trials. Four rice cultivars were used. These are Taichung Sen-10

Figure 1. Location of Morobe Province in Papua New Guinea

Figure 2. Rainfall at the University of Technology agriculture farm in 2001, 2002 and five year's average

Figure 3. Rainfall at Markham valley experimental site in 2002, 2003 and five year's average

(TCS 10), IR 19661-23-3-2-2 (IR 19661), BG 379-2, and Finsch. Finsch is known to exist in PNG for over one hundred years while other three are exotic varieties imported from overseas. At the time of land preparation, Glyphosate (Round up) a pre-planting herbicide was applied (4L/ha). Seedbed was established by ploughing and harrowing twice to incorporate any primary growth/stubble. The trial was laid out in a Randomized Complete Block Design, with four replications. The plot size was 3m x 5m with one meter clearance between them. Seeds were planted by dibble stick method. In this method a pointed stick was pushed to the ground to make a hole for 3-5 seeds at a depth of about 4 cm. The holes were spaced about 25 cm apart. Experimental field received 50 kgs of NPK (12:5:17) per hectare as a basal dose. Additional nitrogen fertilizer (20 kg/ha) was applied as urea in two splits during early and late tillering stages. Fertilizer was broadcast manually. At Unitech three manual weeding was done at seedling, early and late tillering stages. There was very little infestation of weeds at Markham valley which were weeded manually at seedling stage only. Harvesting was carried out at Unitech site in October 2001, 2002 and at Markham valley in April 2002, April-May 2003 for the first and second trial respectively. Harvesting was done manually with a knife (sickle). After harvest each of the treatment plots was threshed separately by beating on a wooden block. Grains were cleaned, sun dried and weighted along with the moisture content (Satake Moisture, Model SS-5). The yield data was adjusted to 14% moisture content. The above treatments and management practices remained the same in all trials.

Soil properties measurement

Measurement of soil physical properties included particle size distribution, bulk density, field moisture capacity, and saturated hydraulic conductivity. Soil particle size distribution was determined by hydrometer method (Gee and Bauder 1986). Soil bulk density was determined using the core method (Blake and Hartge 1986). Field moisture capacity (*in situ*) was determined by

the method as described by Cassel and Nielsen (1986). Soil saturated hydraulic conductivity (*Ks*) measurements were carried out by ring infiltration method (Rowell 1994). At the beginning of each trial three soil samples were taken from each site for chemical analysis. Each soil sample consisted of a mixture of four subsamples taken from the top 20cm depth of the soil. Soil samples collected were air dried and then ground lightly with a mortar and pestle to pass through a 2 mm round-hole sieve. Soil chemical analysis was carried out by the following methods as described by Rayment and Higginson (1992). The procedures were as follows. Total Nitrogen-semimicro Kjeldahl, steam distillation (reference: 7A1); Organic carbon-Walkley and Black (reference: 6A1); Exchangeable bases and CEC-1M ammonium acetate at pH 7.0 (reference: 15D1); Olsen-extractable phosphorus (reference: 9C1). The data presented here is the average of three measurements.

Statistical Analysis

The data were analyzed using the standard procedure of randomized block design to compare means for grain yield. Analysis of variance (ANOVA) was used to test the difference in yield. Treatment means were compared using the least significant difference (LSD) procedure and Duncan Multiple Test Range (DMRT) at the 5% probability level. Yield among and between the varieties and the yields obtained in two trials were computed.

RESULTS AND DISCUSSION

Rice yield obtained at Unitech and Markham valley trials are given in Table 1. In the first trial at Unitech highest yield obtained was in TCS 10 (3.8 t/ha) and at Markham valley it was in IR 19661 (5.6 t/ha). In both experimental sites BG 379-2 have produced the lowest yield. The yield obtained in BG 379-2 was 1.9 t/ha and 3.3 t/ha at Unitech and Markham valley respectively.

The results of selected chemical and physical analysis of Unitech and Markham valley soils are

Table 1. Rice yield (t/ha) at the Unitech in 2001 and 2002, and at Markham valley in 2002 and 2003 trials

Rice variety	Unitech agriculture farm		Markham valley	
	2001	2002	2002	2003
TCS 10	3.81a	3.21b	5.63ab	5.89ab
Finsch	3.08b	2.76c	5.03bc	3.82c
BG 379-2	1.96c	1.68b	3.38d	2.75d
IR 19661	3.17b	3.04b	6.77a	4.87bc

Means followed by the same letter in the vertical column are not significantly different according to Duncan's Multiple Range Test (pd" 0.5).

given in Table 2. Analysis of soil collected on the onset of first trial show that the contents of nutrients at Markham valley and Unitech soil were not different significantly except organic carbon, available P and CEC. At Markham valley the content of organic carbon was 2.24% whereas it was 1.6% at Unitech. At Markham valley the levels of available P (Olsen- P) was 24 mg/kg compared to 11 mg/kg at Unitech soil. Soil CEC was 30 cmol./kg and 49 cmol./kg at Unitech and Markham valley respectively. It is postulated that yield difference between these two sites was primarily due to the differences in nutrient contents particularly in organic carbon, available P and CEC (Ponnamperuma *et al.* 1981; Yamaguchi 1997; Pandey 1998). However, yield difference among the varieties was expected as cultivars respond differently to the available water and nutrients because of genetic variations (Hedley *et al.* 1994; Ladha *et al.* 1998; Wade *et al.* 1999).

In the second trial at Unitech yield has declined significantly ($p < 0.05$) in TCS 10, Finsch, and BG 379-2 varieties. Whereas, there was no significant difference in soil nutrient contents between the trials (Table 2). However, in the second trial at Markham valley there was a significant loss of organic carbon and available phosphorus but yield has declined in IR 19661 only. Therefore, it is assumed that apart from plant nutrients other factors might have involved in the variation of yield at both experimental sites. The loss of organic carbon at Markham valley may decrease biomass, organic matter turnover, and increase mineralization of added organic matter (Juo and Lal 1977, 1979;

Jaiyeoba 2003). Organic matter affects CEC (Bernal *et al.* 1992; Tisdale *et al.* 1993). Even though there was a significant loss of organic matter at Markham valley soil, but it did not show any effect on CEC probably due to the valley charged clay particles (Ca^{2+} , Mg^{2+} , K^+ etc.). The decrease in available P in the valley soil after the cropping was expected (Parfitt and Thomas 1975; Parfitt and Mavo 1975).

In rainfed rice ecosystems apart from plant nutrients the availability of water is considered to be very important to the productivity of rice (IRRI 1993). The total rainfall at Unitech 2001, 2002 trials was 3057 mm and 3828 mm, and at Markham valley 2002, 2003 trials it was 1612 mm and 898 mm respectively (Fig. 2 and 3). Rainfall data show that the amount of rainfall that Unitech have received in both trials was more than double than that of Markham valley. But in two consecutive trials all the variety have produced higher yield at Markham valley (Table 1). Mechanical analysis show that Unitech soil was a loamy sand, whereas, Markham valley was a clay loam (Table 2). The hydraulic conductivity (K_s) and field moisture capacity at Unitech soil was 45 mm/h and 22% and at Markham valley it was 15 mm/h and 52% respectively. It is postulated that due to the high hydraulic conductivity and low field moisture capacity of Unitech soil, plants could not use moisture and nutrients efficiently and hence low in yield (Lal 1979; Singh *et al.* 2000; Saleh *et al.* 2000; Oberthur and Kam 2000). In each experimental site the yield difference between the trials is presumed due to the pattern of rainfall of the site. In both experimental sites the pattern of rainfall was very erratic. Therefore, it is assumed

Table 2. Some chemical and physical properties of Unitech and Markham valley soil.

	Unitech		Markham valley	
	2001	2002	2002	2003
pH (1:5 w/v)	6.5	6.5	6.8	6.7
Organic Carbon (g/kg)	16.0 \pm 0.33	13.0 \pm 0.23	22.4 \pm 0.24	13.9 \pm 0.23*
Total Nitrogen (g/kg)	2.0 \pm 0.02	1.9 \pm 0.01	2.1 \pm 0.01	1.8 \pm 0.02
Available P Olsen (mg/kg)	11.0 \pm 2.65	11.0 \pm 3.35	24.0 \pm 6.51	10.0 \pm 7.33*
CEC pH7 NH_4OAc (cmol/kg)	29.0 \pm 3.00	30.0 \pm 3.51	49.0 \pm 4.58	53.0 \pm 1.00
Exchangeable cations (cmol/kg)				
Ca	21 \pm 2.73	19 \pm 1.00	57 \pm 6.63	56 \pm 5.77
Mg	3 \pm 0.90	3 \pm 0.76	9 \pm 1.35	9 \pm 1.32
K	0.91 \pm 0.19	0.7 \pm 0.29	2 \pm 0.31	2 \pm 0.29
Sand content (g/kg)	840	-	380	-
Silt content (g/kg)	140	-	340	-
Clay content (g/kg)	20	-	280	-
Bulk density (Mg/m ³)	1.26	-	1.14	-
Field moisture capacity (g/kg)	260	-	530	-
K_s (mm/h)	45	-	15	-

(-) not determined

* indicates significance at $p < 0.05$

that it is not the amount of rainfall but the extreme variability both within and between the years have affected rice yield (Craig and Pisone 1985; Patil *et al* 1998; Fukai *et al.* 2000).

CONCLUSIONS

The average grain yield obtained at Unitech 2001 and 2002 trials was 3 t/ha and 2.6 t/ha and at Markham valley 2002 and 2003 trials it was 5.2 t/ha and 4.3 t/ha respectively. In rainfed rice cropping system the global average yield of rice is 1-3 t/ha (Dobermann and Fairhurst, 2000). This suggests that under current practice of low input and low intensity agriculture of the province soil nutrients was not a major limiting factor for rice cultivation. However, hydraulic conductivity and moisture holding capacity of soil could influence the available moisture to plants and hence yield. It was also observed that there was no simple relationship between rainfall and grain yield.

REFERENCES

Baseden, S.C. (1960) Notes on deficiency symptoms in forestry nurseries. *Papua and New Guinea Agricultural Journal* 13, 76-77.

Bernal, M.P., Roig, A., LAX, A. and Navarro, A.F. (1992). Effect of the application of pig slurry of some physio-chemical and physical properties of calcareous soils. *Bioresources Technol.* 42, 233-239.

Blake, G.R. and Hartge, K.H. (1986) Bulk Density. In *Methods of Soil Analysis*. Part 1, Physical and Mineralogical Methods 2nd edn (Ed. A Klute). American Society of Agronomy, Inc. Madison, Wisconsin USA. 364-367.

Bleeker, P. (1983a) Soils. In *'Papua New Guinea Resource Atlas'*. (Ed. E Ford) Jacaranda Press Pty Ltd. Australia.

Bleeker, P. (1983b) Soils of Papua New Guinea. The Commonwealth Scientific and Industrial Research Organization, Australia. Australian National University Press, Canberra, Australia.

Cassel, D.K. and Nielsen, D.R (1986) Field capacity and available water capacity. In *'Methods of Soil Analysis'* Part 1 (Ed. CA Black). American Society of Agronomy, Inc. USA. 901-924.

Craig, I.A. and Pisone, U. (1985) Overview of rainfed agriculture in Northeast Thailand. In: Pairintra C, Wallpapan K, Parr JF, Whitman CE, editors. *Rainfed agriculture in Northeast Thailand. Proceedings of the Workshop, Khon Kaen University, Khon Kaen, Thailand, 25 Feb.-1 March 1985.* Pp. 24-37.

Dobermann, A. and Fairhurst, T. (2000) Rice Nutrient Disorders & Nutrient Management. Potash & Phosphate Institute (PPI), Potash & Phosphate Institute of Canada (PPIC) and International Rice Research Institute (IRRI).

Fahmy, F.N. (1977) Soil and leaf analysis in relation to the nutrition of tree crops in Papua New Guinea. In *'Proceedings of the Conference on Classification and Management of Tropical Soils'*. Malaysian Society of Soil Science, Kula Lumpur. 309-318.

FAO (Food and Agricultural Organization of the United Nations) (2000) FAOSTAT Database. Rome, FAO.

FAO-UNESCO (1988) Soil Map of the World. World Soil Resources Report 60, FAO, Rome.

Ford, E. (1974) Climate. In *"Papua New Guinea Resource Atlas"*. Edited by: Edger Ford. Jacaranda Press Pty Ltd. Australia.

Fukai, S., Basnayake, J. and Cooper, M. (2000) Modeling water availability, crop growth, and yield of rainfed lowland rice genotypes in northeast Thailand. In *'Characterizing and Understanding Rainfed Environments.'* (Eds. TP Tuong, SP Kam, L Wade, S Pandey, BAM Bouman, B Hardy). International Rice Research Institute.

Gee, G.E. and Bauder, J.W. (1986) Particle-Size Analysis. In *'Methods of Soil Analysis'*. Part 1, Physical and Mineralogical Methods 2nd edn (Ed. A Klute). American Society of Agronomy, Inc. Madison, Wisconsin USA. 404-408.

Hartemink, A.E. and Bourke, R.M. (2000) Nutrient deficiencies of agricultural crops in Papua New Guinea. *Outlook of Agriculture* 29, No. 2, 97-108.

Hartemink, A.E., Johnston, M., O'Sullivan, J.N. and Poloma, S. (2000). Nitrogen use efficiency of taro and sweet potato in the humid lowlands of Papua New Guinea. *Agriculture, Ecosystems and Environment* 79, 271-280.

Hedley, M.J., Kirk, G.J.D. and Santos, M.B. (1994) Phosphorus efficiency and the forms of soil P

utilized by upland rice cultivars. *Plant Soil* 158, 53-62.

Hanson, L.W., Allen, B.J., Bourke, R.M. and McCarthy, T.J. (2001) Papua New Guinea: Rural Development Handbook. The Australian National University, Land Management Group.

IRRI (International Rice Research Institute) 1993. 1993-1995 IRRI rice almanac. Manila (Philippines): International Rice Research Institute.

Jaiyeoba, I.A. (2003) Changes in soil properties due to continuous cultivation in Nigerian semiarid savannah. *Soil & Tillage Research*. 70, 91-98.

Juo, A.S.R. and Lal, R. (1977) The effects of fallow and continuous cultivation on the chemical and physical properties of an Alfisol in western Nigeria. *Plant and Soil* 47, 567-584.

Juo, A.S.R. and Lal, R. (1979) Nutrient profile in a tropical Alfisol under conventional and no-tillage system. *Soil Sci.* 127, 123-168.

Ladha, J.K., Kirk, G.J.D., Bennett, J., Reddy, C.K., Reddy, P.M. AND Singh, U. (1998) Opportunities for increased nitrogen-use efficiency from improved lowland rice germplasm. *Field Crops Res* 46, 41-71.

Lal, R. (1979) The role of Physical Properties in Maintaining Productivity of Soils in the Tropics. In 'Soil Physical Properties and Crop Production in the Tropics'. (Eds. R Lal, DJ Greenland). John Wiley and Sons.

Manning, M. (1998) Food prices and production. Post Courier, 29 May 1998.

Oberthur, T. and Kam, S.P. (2000) Perception, understanding, and mapping of soil variability in the rainfed lowlands of northeast Thailand. In 'Characterizing and Understanding Rainfed Environments'. (Eds. TP Tuong, SP Kam, L Wade, S Pandey, BAM Bouman, B Hardy). International Rice Research Institute.

Pandey, S. (1998) Nutrient management technologies for rainfed rice in tomorrow's Asia: economic and institutional considerations. In 'Rainfed Lowland Rice: Advances in Nutrient Management Research'. (Eds. KK Ladha, L Wade, A Dobermann, W Reichardt, GJD Kirk, C Piggin). International Rice Research Institute.

Parfitt, R.L. and Mavo, B. (1975) Phosphate fixation in some Papua New Guinea soils. *Science in New Guinea* 3(3), 179-190.

Parfitt, R.L. and Thomas, A.D. (1975) Phosphorus availability and phosphate fixation in Markham valley soil. *Science in New Guinea* 3(2), 123-130.

Patil, S.K., Das, R.O., Mishra, V.N., Singh, V.P. and Singh, U. (1998) Improving the use of residual nutrients by rice after a legume in the rainfed lowlands of eastern India. In 'Rainfed Lowland Rice: Advances in Nutrient Management Research' (Eds. KK Ladha, L Wade, A Dobermann, W Reichardt, GJD Kirk, C Piggin). International Rice Research Institute.

Ponnamperuma, F.N., Cayton, M.T. and Lantin, R.S. (1981) Dilute hydrochloric acid as extractant for available zinc, copper and boron in rice. *Plant Soil* 61, 297-310.

Rayment, G.E. and Higginson, F.R. (1992) Australian laboratory handbook of soil and water chemical methods. Inkata Press.

Rowell, D.L. (1994) Soil Science: Methods & Applications. Longman Group UK Limited. Pp.102-103.

Saleh, A.F.M., Mazid, M.A. and Bhuiyan, S.I. (2000) Agrohydrologic and drought risk analyses of rainfed cultivation in northwest Bangladesh. In 'Characterizing and Understanding Rainfed Environments.' (Eds. TP Tuong, SP Kam, L Wade, S Pandey, BAM Bouman, B Hardy). International Rice Research Institute.

Singh, V.P., Tuong, T.P. and Kam, S.P. (2000) Characterizing rainfed rice environments: an overview of the biophysical aspects. In 'Characterizing and Understanding Rainfed Environments.' (Eds. TP Tuong, SP Kam, L Wade, S Pandey, BAM Bouman, B Hardy). International Rice Research Institute.

Soil Survey Staff (1999) "Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys." 2nd Edition. USDA Agric. Handbook. No. 436. (Govt. Printer, Washington, D.C.).

Tisdale, S.L., Nelson, W.L., Beaton, J.D. and Havlin, J.L. (1993) Soil Fertility and Fertilizers. Macmillan Publishing Company. New York.

Van Wijk, C.L. (1959) Reconnaissance soil survey
– east coast New Ireland. *Papua and New Guinea Agricultural Journal* 11, 94-109.

Wade, L.J., McLaren, C.G., Quintana, L., Harnpichitvitya, D., Rajatasereekul, S., Sarawgi, A.K., Kumar, A., Ahmed, H.U., Sarwoto, Singh, A.K., Rodriguez, R., Siopongco, J. and Sarkarung, S. (1999) Genotype by environment interaction across diverse rainfed lowland rice environments. *Field Crops Res.* 64, 35-50.

Yamaguchi, J. (1997) Sulfur status of rice and lowland soils in West Africa. In: Proceedings of the International Symposium on "Plant Nutrition for Sustainable Food production and Environment", Tokyo, Japan. Pp.813-814.

Short Communication

VOLATILE CHEMICAL CONSTITUENTS OF PATCHOULI (*POGOSTEMON CABLIN* (BLANCO) BENTH.: LABIATAE) FROM THREE LOCALITIES IN PAPUA NEW GUINEA

Stewart W Wossa¹, Topul Rali² and David N Leach³

ABSTRACT

Fresh aerial parts of patchouli (*Pogostemon cablin*) were obtained from Rabaul, Port Moresby and Inawabui in the Mekeo area of the Central Province. The volatile oil constituents were extracted by exhaustive hydrodistillation where each of the patchouli samples afforded oil yields of about 0.1 percent. Detailed chemical investigations of the oils indicated patchouli alcohol to be the main constituent in the oils from the three localities. It was noted that the patchouli alcohol composition in the cultivar from Rabaul, Port Moresby and Mekeo were 71.8, 71.7 and 43.7 percent compositions respectively, suggesting that the patchouli oil from PNG can attract a ready market on the basis of its high patchouli alcohol contents in the patchouli oil as opposed to between 30 – 40 percent composition from other patchouli oil producing countries.

Keywords: *Pogostemon cablin*, *Labiatae*, *Patchouli*, *Essential oil composition*, *Patchouli alcohol*, *Sesquiterpene*.

INTRODUCTION

Patchouli oil is obtained from *Pogostemon cablin* (Blanco) Benth., a member of the plant family Labiatae. It is a predominantly tropical herbaceous and perennial plant species with wide distribution in most South East Asian nations where it has also been documented as having many significant uses in traditional medicine and agriculture (Guo 2001). The leaves and stem contain a yellowish and viscous oil that has a unique and intense camphoraceous odour with many useful applications, hence high market value in the perfumery industry.

On the basis of its traditional uses as alternative medicine, agricultural pest control agent and applications in the perfume industry, detailed phytochemical studies were pursued to identify the chemical constituents responsible for the perceived activities. In one such study, the acetone extracts of the leaves were found to contain sesquiterpene hydroperoxide, which showed significant trypanocidal activities (Kiuchi *et al.* 2004). Another study also identified the cytotoxic Licochalcone A, Ombuim and 5,7-dihydroxy-3',4'-dimethoxyflavanone as the main chemical compounds from the aerial

parts (Park *et al.* 1998). The hexane extracts were also noted to contain patchouli alcohol, pogostol, stigmast-4-en-3-one, retusin and pachypodol, which showed antiemetic activities (Yang *et al.* 1999).

The study of the chemical components within the essential oil extracts were found to be made up of patchouli alcohol, delta-guaiene, alpha-guaiene, seychellene, alpha-patchoulene, aciphylene, trans-caryophyllene (Feng *et al.* 1999; Zhao *et al.* 2005; Guan *et al.* 1994). Luo and co-workers (1999) investigated the patchouli oil from the Gaoyao County, China and noted the stem to contain high pogostone content while the leaves contained high patchouli alcohol contents. While the chemical components were noted to be the same from different regions studied, the compositions were found to vary between regions as influenced by various environmental factors (Singh *et al.* 2002; Yan *et al.* 2002). Furthermore, the oil composition from different cultivating locations and different harvesting times were obviously different (Luo *et al.* 2002), suggesting that detailed chemical study was required to establish the reasons for such differences. Such studies revealed that there were two main chemotypes in patchouli; one being the pogostone-

¹ Faculty of Science, University of Goroka, PO Box 1078, Goroka, Eastern Highlands Province, PNG.

² Chemistry Department, University of Papua New Guinea.

³ Centre for Phytochemistry and Pharmacology, Southern Cross University, Australia.

type and the other being the patchouliol-type on the basis of the molecular evidences (Liu *et al.* 2002). The pogostone-type contained rich oxygenated components especially pogostone in the volatile oil while the patchouliol-type contain rich patchouliol, delta-guaiene, alpha-guaiene and other non-oxygenated components (Luo *et al.* 2003).

Morphological studies of the leaves of patchouli also indicated the leaves to contain external trichomes as well as specialized internal accumulatory cells where concentrations of the sesquiterpenes were noted to be exceptionally higher than other parts of the plant (Henderson *et al.* 1970). Further biosynthetic studies revealed high concentrations of the enzyme sesquiterpene cyclase (patchouli synthase) in the leaves, which was postulated to be responsible for the conversion of the farnesyl pyrophosphate, through biosynthetic mechanisms, to the cyclic sesquiterpenes (alpha and beta-patchoulene, alpha-bulnesene and alpha-guaiene) found in patchouli oil (Munck and Croteau 1990; Croteau *et al.* 1987). Another study of the leaf extracts revealed the presence of patchoulan-1,12-diol, which was also postulated to be the main precursor of nor-patchoulenol (Trifilieff 1980).

Interesting biological activities have been reported for the extracts of patchouli by various authors. The patchouli oil has been reported to show activity against three strains of methicillin-resistant *Staphylococcus aureus* (Edwards-Jones *et al.* 2004), cytotoxic (Park *et al.* 1998), bactericidal activity against *Campylobacter jejuni* and *Listeria monocytogenes* (Friedman *et al.* 2002), antibacterial and antifungal activities (Patraik *et al.* 1996; Osawa *et al.* 1990), unusual tissue destructive effects on the exoskeletons of Formosan subterranean termites, *Coptotermes formosanus* Shiraki (Zhu *et al.* 2003), effective mosquito repellency effects (Trongtokit *et al.* 2005), showed promise as alternative preservative of perishable foods (Holley and Patel 2005), antiemetic activities (Yang *et al.* 1999) and trypanocidal activities (Kiuchi *et al.* 2004). Such interesting biological activities led to a number of synthetic studies to attempt their synthesis on a laboratory scale (Magee *et al.* 1995; Niwa *et al.* 1984; Niwa *et al.* 1987; Cory *et al.* 1990) including microbial assistance in the conversion of the substrates into the desired products (Arantes *et al.* 1999).

Currently, patchouli oil is one of the important natural essential oils because of its base and lasting aromatic character. The yellowish brown coloured viscous oil obtained from the leaves and stems have an intensely camphoraceous odour, a character that is utilized in the cosmetic industries to scent perfumes,

flavour toothpastes and other health and self-care products. The global demand for patchouli oil has been noted to increase annually with Indonesia as the major producer of this oil (Robbins 1983; Tao 1983). The main buyers of the patchouli oil are the USA, Switzerland and France.

Preliminary studies on the chemical constituents in the PNG cultivar of patchouli (Wossa *et al.* 2004a) has shown the PNG oil to contain superior patchouli alcohol content at 70 percent as compared to the oil from Indonesia, Philippines, Malaysia, China and other South East Asian nations, which have patchouli alcohol compositions between 30 - 40 percent. In view of the economic potential in the cultivation and extraction of patchouli oil as an alternative agribusiness in PNG, we report herein the chemical constituents in the volatile oil extracts from patchouli from three localities and discuss these data in the light of the global market trends. This report is part of an ongoing study to document the chemical constituents in the essential oils obtained from the diversity of aromatic plants of PNG (Rali *et al.* 2003; Wossa *et al.* 2004a; 2004b; 2005).

MATERIALS AND METHODS

Samples of Patchouli were obtained from Rabaul, Port Moresby and the Mekeo area of the Central Province. The stem cuttings of the Rabaul cultivar was grown in a Port Moresby backyard garden to compare its oil yield and chemical composition with that of the samples from Rabaul. A native cultivar from the Mekeo area was also used in this study for comparative analysis of the chemical constituents.

The matured leaf samples of the patchouli were collected while fresh and the volatile oils obtained through exhaustive hydrodistillation. The distillates were extracted with diethyl ether and the ether removed under reduced pressure to afford yellowish brown-coloured pure oils. The oils were dried with anhydrous magnesium sulphate and stored at 4 degrees Celsius until further analysis. The analyses of the oils were done using a gas chromatograph coupled to a mass spectrometer (GC and GC/MS) and the individual components identified on the basis of their individual retention indices.

The analyses of the oil constituents were done as previously described (Wossa *et al.* 2005). The individual oil constituents were identified on the basis of their respective retention indices and confirmed by comparison with the mass spectral data of the authentic reference compounds or with the library of the published data (Adams 1995).

RESULTS AND DISCUSSION

The results of the GC and GC/MS analysis of the patchouli oil obtained from Rabaul, Port Moresby and Inawabui in Mekeo (Table 1) indicate that the Rabaul cultivar of patchouli has a higher patchouli alcohol content than the Mekeo cultivar with compositions at 71.8 and 43.7 percent compositions respectively. Such differences can be expected due to the various environmental and genetic factors that may be involved in the genesis of the different chemical constituents in the two cultivars of patchouli. Similarly, the Port Moresby cultivar was found to be superior in yield and composition of the patchouli alcohol than the Mekeo cultivar with compositions at 71.7 percent and 43.7 percent respectively.

On the other hand, the chemical constituents and composition of the Port Moresby cultivar were noted to be similar to that of the Rabaul cultivar. This result was as expected because the cuttings were from the Rabaul cultivar and were cultivated in the backyard garden in Port Moresby to see the possible effects of environmental factors on oil yield and chemical composition. The similar oil yield and chemical constituents and composition led us to infer that the environmental factors had minimal effect on the yield and composition of the patchouli oil. These results further suggest that the Rabaul cultivar has a higher patchouli alcohol content compared to that reported from other South East Asian cultivars. The comparison of the patchouli alcohol contents

from the Mekeo cultivar with that of the other South East Asian cultivars can be categorized as being similar on the basis of the patchouli alcohol composition at around 40 percent, however they differ in the composition of the other constituents. This study, further shows that the three patchouli cultivars analyzed so far belong to the patchouliol-type with high patchouli alcohol contents and other non-oxygenated constituents.

On the basis of the chemical compositional data on patchouli oil presented, it can be realized that the patchouli alcohol content in the patchouli oil from Rabaul are higher compared to those reported from other patchouli oil producing countries in the region. This implies that patchouli oil from PNG can be readily accepted on the global patchouli oil market on the basis of the high patchouli alcohol contents. These results further suggest that patchouli can be encouraged and cultivated as a rural based agro industry in PNG. With the current global market for patchouli oil fluctuating between US\$ 12 – 27 per kilogram, PNG could do well in introducing patchouli oil production as an alternative income earner in the country.

It is therefore recommended that further studies into the effects of the soil nutrients and chemistry, irrigation systems, age of crop at harvest, other important environmental as well as genetic factors be pursued to identify the optimum conditions for maximum yield of the patchouli alcohols with higher patchouli alcohol content from the patchouli cultivars

Table 1. Volatile chemical constituents (% area) of *Pogostemon cablin* from three localities in PNG

Chemical Constituents	Rabaul	Port Moresby	Mekeo
alpha-pinene	-	-	1.2
alpha-guaiene	7.5	4.6	7.8
seychellene	3.9	3.2	6.2
gamma-patchoulene	-	-	3.7
beta-patchoulene	-	-	1.8
alpha-patchoulene	1.7	1.5	1.4
delta-guaiene	9.9	6.5	9.5
pogostol	5.1	-	-
Patchouli alcohol	71.8	71.7	43.7
beta-caryophyllene	-	1.1	2.4
aciphylene	-	1.2	-
beta-patchoulene	-	2.2	-
viridiflorol	-	1.4	-
Selina-3,7(11)-diene	-	-	5.1
Benzyl benzoate	-	-	1.7
C ₁₅ H ₂₂ O	-	6.6	0.7
C ₁₅ H ₂₄	-	-	1.9
C ₁₅ H ₂₆ O	-	-	0.9

- = not detected.

of PNG. Such studies will pave the way for commercial production of patchouli oil in PNG as an alternative revenue earner.

CONCLUSION

This study has given new insight into the commercial potential for the patchouli oil production in PNG in terms of its oil yield and chemical constituents. The Rabaul cultivar of patchouli was found to contain higher patchouli alcohol content compared to the Mekeo cultivar while the patchouli alcohol content in the Mekeo cultivar were noted to be within the marketable range. It was also noted that the cultivation of the cuttings from the Rabaul cultivar in Port Moresby gave similar yield and composition, suggesting that the environmental factors had minimal effect on the oil yield and chemical composition.

In view of the commercial potential in the cultivation and extraction of the patchouli oil as an alternative revenue earner in the country, further studies into the soil nutrients and chemistry, the irrigation systems, age of plant at harvest, other environmental factors and genetic composition needed to be established to assist farmers in cultivating *Pogostemon cablin* for the extraction of its oil for the global patchouli oil markets.

ACKNOWLEDGEMENT

The authors are grateful to Mr. Pius Piskaut of the University of PNG Herbarium for the plant species description and identification, the University of PNG Research Council for the research grant and Mr. Ian Sexton of New Guinea Spices Ltd for the patchouli samples from Rabaul and the people of Inawabu in the Mekeo area for the patchouli samples from Mekeo.

REFERENCES

Adams, R.P. (1995) "Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry", Allured Pub. Corp., Carol Stream, IL.

Arantes, S.F., Hanson, J.R. and Hitchcock, P.B. (1999). "The microbiological hydroxylation of the sesquiterpenoid patchoulol by *Mucor plumbeus*". *Phytochemistry*, **52**(4): 635 – 638.

Cory, R.M., Bailey, M.D. and Tse, D.W.C. (1990). A divergent approach to patchouli sesquiterpenes:

Synthesis of 3-oxopatchouli alcohol, 5-oxo-7-hydroxy-13-norcycloseychellene, 6-methoxy-4,12-dehydro-13-norcycloseychellene and patchouli alcohol". *Tetrahedron Letters*, **31**(47): 6839 – 6842.

Croteau, R., Munck, S.L., Akoh, C.C., Fisk, H.J. and Satterwhite, D.M. (1987). "Biosynthesis of the sesquiterpene patchoulol from farnesyl pyrophosphate in leaf extracts of *Pogostemon cablin* (patchouli): mechanistic considerations". *Arch. Biochem. Biophys.*, **256**(1): 56 – 68.

Edwards-Jones, V., Buck, R., Shawcross, S.G., Dawson, M.M. and Dunn, K. (2004). "The effect of essential oils on methicillin-resistant *Staphylococcus aureus* using dressing model". *Burns*, **30**(8): 772 – 777.

Feng, Y., Guo, X. and Luo, J. (1999). "GC-MS analysis of the volatile oil of *Herba Pogostemonis* collected from Leizhou County". *Zhong Yao Cai*, **22**(5): 241 – 243. (Article in Chinese with English Abstract).

Friedman, M., Henika, P.R. and Mandrell, R.E. (2002). "Bactericidal activities of plant essential oils and some of their isolated constituents against *Campylobacter jejuni*, *Escherichia coli*, *Listeria monocytogenes*, and *Salmonella enterica*". *Journal of Food Protection*, **65**(10): 1545 – 1560.

Guan, L., Quan, L.H., Xu, L.Z. and Cong, P.Z. (1994). "Chemical constituents of *Pogostemon cablin* (Blanco) Benth.". *Zhongguo Zhong Yao Za Zhi*, **19**(6): 355 – 356, 383. (Article in Chinese with English Abstract).

Guo, J.-X. (2001). "International Collation of Traditional and Folk Medicine". Volume 4, World Scientific, Singapore. pp 99 – 100.

Henderson, W., Hart, J.W., How, P. and Judge, J. (1970). "Chemical and morphological studies on sites of sesquiterpene accumulation in *Pogostemon cablin* (patchouli)". *Phytochemistry*, **9**(6): 1219 – 1228.

Holley, R.A. and Patel, D. (2005). "Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials". *Food Microbiology*, **22**(4): 273 – 292.

Kiuchi, F., Matsuo, K., Ito, M., Qui, T.K. and Honda, G. (2004). "New Sesquiterpene Hydroperoxides with Trypanocidal Activity from

Pogostemon cablin". Chem. Pharm. Bull., 52(12): 1495 – 1496.

Liu, Y.P., Luo, J.P., Feng, Y.F., Guo, X.L. and Cao, H. (2002). "DNA profiling of *Pogostemon cablin* chemotypes differing in essential oil composition". *Yao Xue Xue Bao*, 37(4): 304 – 308. (Article in Chinese with English Abstract).

Luo, J.P., Liu, Y.P., Peng, Y.F., Guo, X.L. and Cao, H. (2003). "Two chemotypes of *Pogostemon cablin* and influence of region of cultivation and harvesting time on volatile oil composition". *Yao Xue Xue Bao*, 38(4): 307 – 310. (Article in Chinese with English Abstract).

Luo, J., Guo, X. and Feng, Y. (2002). "Constituents analysis on volatile oil of *Pogostemon cablin* from different collection time cultivated in Hainan". *Zhong Yao Cai*, 25(1): 21 – 23. (Article in Chinese with English Abstract).

Luo, J., Feng, Y., Guo, X. and Li, X. (1999). "GC-MS analysis of volatile oil of *Herba Pogostemonis* collected from Gaoyao County". *Zhong Yao Cai*, 22(1): 25 – 28. (Article in Chinese with English Abstract).

Magee, T.V., Stork, G. and Fludzinski, P. (1995). "A total synthesis of rac-patchouli alcohol". *Tetrahedron Letters*, 36(42): 7607 – 7610.

Munck, S.L. and Croteau, R. (1990). "Purification and characterization of the sesquiterpene cyclase patchoulol synthase from *Pogostemon cablin*". *Arch. Biochem. Biophys.*, 282(1): 58 – 64.

Niwa, H., Hasegawa, T., Ban, N. and Yamada, K. (1984). "Stereocontrolled total synthesis of (±)-hydroxypatchouli alcohol and the corresponding (±)-carboxylic acid metabolites of patchouli alcohol and (±)-norpachoulenol". *Tetrahedron Letters*, 25(26): 2797 – 2800.

Niwa, H., Hasegawa, T., Ban, N. and Yamada, K. (1987). "Stereocontrolled total synthesis of (±)-norpachoulenol and two metabolites of patchouli alcohol, (±)-hydroxypatchouli alcohol and the corresponding (±)-carboxylic acid". *Tetrahedron*, 43(5): 825 – 834.

Osawa, K., Matsumoto, T., Murayama, T., Takiguchi, T., Okuda, K. and Takazoe, I. (1990). "Studies on the antibacterial activity of plant extracts and their constituents against periodontopathic bacteria". *Bull. Tokyo Dental College*, 31(1): 17 – 21.

Park, E.J., Park, H.R., Lee, J.S. and Kim, J. (1998). "Licochalcone A: An inducer of cell differentiation and cytotoxic agent from *Pogostemon cablin*". *Planta Medica*, 64(5): 464 – 466.

Patraik, S., Subramanyam, V.R. and Kole, C. (1996). "Antibacterial and antifungal activities of the essential oils in vitro". *Microbios*, 86(349): 237 – 246.

Rali, T., Leach, D.N. and Wossa, S.W. (2003). "Preliminary Analysis of the Essential Oil Compositions in Some Aromatic Plants Species of Papua New Guinea", Abstracts of the 5th New Guinea Biological Conference, University of Goroka, Eastern Highlands Province, Papua New Guinea, September 2003.

Robbins, S.R.J. (1983). "Natural essential oils. Current Trends in production, marketing and demand". *Perfumer and Flavorist*, 8: 75 – 82.

Singh, M., Sharma, S. and Ramesh, S. (2002). "Herbage, oil yield and oil quality of patchouli [*Pogostemon cablin* (Blanco) Benth.] influenced by irrigation, organic mulch and nitrogen application in semi-arid tropical climate". *Industrial Crops and Products*, 16(2): 101 – 107.

Tao, C. (1983). "China's burgeoning aromatic industry". *Perfumer and Flavorist*, 7: 1

Trifilieff, E. (1980). "Isolation and the postulated precursor of nor-patchoulenol in patchouli leaves". *Phytochemistry*, 19(11): 2467.

Trongtokit, Y., Rongsrivam, Y., Komalamisra, N. and Apiwathnasorn, C. (2005). "Comparative repellency of 38 essential oils against mosquito bites". *Phytotherapy Research*, 19(4): 303 – 309.

Wossa, S.W., Rali, T. and Leach, D.N. (2004a). "Analysis of the Essential Oil Compositions of Some Selected Spices of Papua New Guinea". *PNG J. Agric. Forest. Fish.*, 47(1-2): 17-20.

Wossa, S.W., Rali, T. and Leach, D.N. (2004b). "The Chemistry of the Aromatic Plant Diversity of Papua New Guinea: The Family Rutaceae". Abstracts and Proceedings of the 6th New Guinea Biological Conference, State University of Papua, Manokwari, Indonesia, August 2004.

Wossa, S.W., Rali, T. and Leach, D.N. (2005). "Analysis of the Volatile chemical constituents of Tumeric (*Curcuma longa* Linn: Zingiberaceae)". *PNG J. Agric. Forest. Fish.*, 48(1-2): 21 – 24.

Yan, Z., Qiu, J., Cai, Y. and Liao, G. (2002). "Study on nutritional characteristics of *Pogostemon cablin*". *Zhong Yao Cai*, **25(4)**: 227 – 230. (Article in Chinese with English Abstract).

Yang, Y., Kinoshita, K., Koyama, K., Takahashi, K., Tai, T., Nunoura, Y. and Watanabe, K. (1999). "Antiemetic principles of *Pogostemon cablin* (Blanco) Benth.". *Phytomedicine*, **6(2)**: 89 – 93.

Zhao, Z., Lu, J., Leung, K., Chan, C.L. and Jiang, Z.H. (2005). "Determination of patchoulic alcohol in *Herba Pogostemonis* by GC-MS-MS". *Chemical and Pharmaceutical Bulletin (Tokyo)*, **53(7)**: 856 – 860.

Zhu, B.C., Henderson, G., Yu, Y. and Laine, R.A. (2003). "Toxicity and repellency of patchouli oil and patchouli alcohol against subterranean termites *Coptotermes formosanus* Shiraki (Isoptera: Rhinotermitidae)". *J. Agriculture and Food Chemistry*, **51(16)**: 4585 – 4588.

**PAPUA NEW GUINEA JOURNAL OF AGRICULTURE, FORESTRY AND
FISHERIES (PNG *j.agric.for.fish.*)**

INDEX

VOLUMES 31-41

1980-1998

By

Janine Conway

With assistance from Betty Aiga and Jones Hiaso

**ACNARS PROJECT
AusAID**

1999

This project was done under Australian Contribution to a National Agricultural Research System (AusAid) and National Agricultural Research Institute, 1999.

Updated, 2002 - 2006

Volumes 45 (1 & 2) - 49 (2)

by

Betty Aiga
DAL Information

**PAPUA NEW GUINEA JOURNAL OF AGRICULTURE, FORESTRY AND
FISHERIES(PNG j.agric.for.fish.)**

INDEX
1980 - 2007

CONTENTS

	Pages
List of Articles	45-53
Author Index	54-57
Subject Index	58-63

Using this Index

The articles are arranged to the order in which they were published. The numbers in the Subject Index and the Author Index refer to the numbers from the List of Articles.

How to use the Index:

1. Look up the subject term or the author's name,
2. Locate the numbers in the list of articles,
3. Locate the volume and issue numbers, then
4. Open to the page number to read the article.

The index also provide the locations of each of the title.

LIST OF ARTICLES

1980 – 2006

1. Rose, C.J., and Wood, A.W. (1980). Some environmental factors affecting earthworm populations and sweet potato production in the Tari Basin, Papua New Guinea Highlands. 31(1-4): 1-13.
2. Ghadhokar, P.A. (1980). Comparison of stylo (*Stylosanthes guianensis* var *guianensis*) cultivars in the Markham Valley of Papua New Guinea. 31(1-4): 15-21.
3. Rose, C.J. (1980). Optimum replanting stage for two varieties of pitpit (*Setaria palmifolia*) in the highlands of Papua New Guinea. 31(1-4): 23-29.
4. Shephered, A. (1980). Replanting on copra plantations. 31(1-4): 31-35.
5. Smith, E.S.C. (1980). *Zophiuma lobulata* Ghauri (Homoptera: Lophopidae) and its relation to the Finschafen coconut disorder in Papua New Guinea. 31(1-4): 37-45.
6. Holmes, J.H.G. (1980). Toxicity of *Leucaena leucocephala*. II: reduces fertility of heifers grazing *Leucaena leucocephala*. 31(1-4): 47-50.
7. Holmes, J.H.G.; Lemerie, C. and Schottler, J.H. (1980). *Imperata cylindrica* for cattle production in Papua New Guinea. 31(1-4): 51-62.
8. Room, P.M. (1980). Insect fauna of oil palm in the Northern Province of Papua New Guinea. 31(1-4): 63-67.
9. Rose, C.J. and White, G.A. (1980). Apparent digestibilities of dry matter, organic matter, crude protein, energy and acid detergent fibre of chopped, raw sweet potato (*Ipomoea batatas* (L.) by village pigs (*Sus scrofa papuensis*) in Papua New Guinea. 31(1-4): 69-72.
10. Greve, J.E. van S. and Ismay, J.W. (1983). Crop insect survey of Papua New Guinea from July 1st, 1969, to December 31st, 1978. 32(1-4): 1-20.
11. Smith, E.S.C. (1984). Results of three insecticide trials against cocoa podsuckers in the Northern Province. 33(1-2): 1-11.
12. Young, G.R. (1984). A checklist of mite and insect pests of vegetable, grain and forage legumes in Papua New Guinea. 33(1-2): 13-38.
13. McGregor, A.J. (1984). Control of Phytophthora seedling blight of cocoa. 33(1-2): 39-50.
14. Clarkson, D. and Moles, D.J. (1984). Effects of four fungicides on the growth of *Phytophthora colocasiae*. 33(1-2): 51-53.
15. Sundberg, P. and Richards, A. (1984). Deep-sea bottom handline fishing in Papua New Guinea: a pilot study. 33(1-2): 55-62.
16. Norris, K.R. and Owen, I.L. (1984). *Muscidae* (Diptera) associated with cattle in Papua New Guinea. 33(1-2): 63-67.
17. Humphrey, J.D. (1984). Note on the prevalence and distribution of the eyeworm of the domestic fowl in Papua New Guinea. 33(1-2): 69-70.
18. Smith, E.S.C. (1985). A review of relationships between shade types and cocoa pest and disease problems in Papua New Guinea. 33(3-4): 79-88.
19. Bourke, R.M. (1985). Sweet potato (*Ipomoea batatas*) production and research in Papua New Guinea. 33(3-4): 89-108.
20. Holmes, J.H.G. and Absalom, P. (1985). Growth rates of Priangan crossbred sheep and some effects of internal parasitism, in the lowlands of Papua New Guinea. 33(3-4): 109-113.
21. Gwaiseuk, W.R.J. and Holmes, J.H.G. (1985). Intake digestibility and growth by tropical breeds of cattle consuming tropical grasses supplemented with mill run. 33(3-4): 115-121.
22. Smith, E.S.C.; Thistleton, B.M. and Pippet, J.R. (1985). Assessment of damage and control of *Helopeltis calvifer* (Heteroptera: Miridae) on tea in Papua New Guinea. 33(3-4): 123-131.
23. Benjamin, C. (1985). Some food market influences of a large-scale small-holder development in the West New Britain area of Papua New Guinea. 33(3-4): 133-141.

24. **Sutherland, J.A. and Bull, P.B.** (1985). Pollination and fruit set in two species of pumpkin in lowland Papua New Guinea. 33(3-4): 143-147.

25. **Street, J.M.** (1985). Book review (Climate of Papua New Guinea). 33(3-4): 149-151.

26. **Parfitt, R.L.** (1985). Book review (Soils of Papua New Guinea). 33(3-4): 153-154.

27. **Williams, D.J.** (1986). Scale insects (Homoptera: Coccoidea) on coffee in Papua New Guinea. 34(1-4): 1-7.

28. **Arentz, F.** (1986). A key to *Phytophthora* species found in Papua New Guinea with notes on their distribution and morphology. 34(1-4): 9-18.

29. **D'Souza, E. and Bourke, R.M.** (1986). Intensification of subsistence agriculture on the Nembri Plateau, Papua New Guinea. 1. General introduction and inorganic fertilizer trials. 34(1-4): 19-28.

30. **D'Souza, E. and Bourke, R.M.** (1986). Intensification of subsistence agriculture on the Nembri Plateau, Papua New Guinea. 2. Organic fertilizer trials. 34(1-4): 29-39.

31. **D'Souza, E., Bourke, R.M. and Akus, W.L.** (1986). Intensification of subsistence agriculture on the Nembri Plateau, Papua New Guinea. 3. Sweet potato cultivar trials: Crop rotation trials and crop introductions. 34(1-4): 41-48.

32. **Muthappa, B.N. and Bull, P.B.** (1986). Collar and root rot of aibika (*Abelmoschus manihot*). I: pathogenicity and effect of systemic fungicides. 34(1-4): 49-53.

33. **Dalzell, P.J.** (1986). The distribution and production of anchovies in Papua New Guinea waters. 34(1-4): 59-70.

34. **Mahoney, D. and Yamb, R.** (1986). Pathogenic bacteria isolated from chickens sold at the Lae market. 34(1-4): 71-75.

35. **Abdelsamie, R.E.** (1986). Effect of day-old debeaking and fowl pox vaccination on the performance of broiler chickens in Papua New Guinea. 34(1-4): 77-79.

36. **Abdelsamie, R.E.** (1996). A study of nutritional problems affecting the smallholder broiler industry in Papua New Guinea. 34(1-4): 81-84.

37. **Owen, I.L.** (1996). Blood parasites of cattle in Papua New Guinea. 35(1-4): 1-11.

38. **Abeyasekera, S. and Nembou, C.S.** (1990). Rainfall analysis for improved agricultural planning. 35(1-4): 13-21.

39. **Dalzell, P.J. and Wright, A.** (1990). Analysis of catch data from an artisanal coral reef fishery in the Tigak Islands, Papua New Guinea. 35(1-4): 23-36.

40. **Lamothe, L., Arentz, F. and Karimbaram, R.** (1990). Germination of cassowary egested and manually defleshed fruit. 35(1-4): 37-42.

41. **COX, P.G. and Kasimani, C.** (1990). Control of taro leaf blight using metalaxyl: Effect of dose rate and application frequency. 35(1-4): 49-55.

42. **Dwyer, Peter D. and Minnegal, M.** (1993). Banana Production by Kubo People of the Interior Lowlands of Papua New Guinea. 36(1): 1-21.

43. **Gollifer, D.E.** (1993). Effects of applications of mulch and potassium on *Capsicum annuum*. 36(1): 22-29.

44. **Cragg, S.M.** (1993). Wood break-down in mangrove ecosystems: A review. 36(1): 30-39.

45. **Onaga, I.; Carrick, M. and Owens, C.** (1993). Analysis of copper and its status in cattle from Morobe Province, Papua New Guinea. 36(1): 40-53.

46. **Gollifer, D.E.** (1993). Fertilizer trials with tumeric (*Curcuma domestica* Val.) at Santa Cruz, Solomon Islands. 36(1): 54-59.

47. **Sewei, J.W. and Osillis, P.** (1993). Aibika (*Abelmoschus manihot*) germplasm in Papua New Guinea. 36(1): 60-69.

48. **Kuniata, L.S. and Young, G.R.** (1993). The use of chlorpyrifos in controlling weevil borer, *Rhabdoscelus obscurus* Boised. (Coleoptera: Curculionidae) in Sugarcane setts. 36(1): 76-78.

49. **Moat, Masayan** (1993). Preserving chicken eggs internal quality using coconut oil. 36(1): 76-78.

50. **Moat M. and Dryden, M.G.** (1993). Nutritive value of sweet potato forage (*Ipomoea batatas* (L.) Lam) as a ruminant animal feed. 36(1): 79-85.

51. Sillitoe, P. (1993). Soil and cultivation in the Papua New Guinea Highlands: I. Indigenous appraisal of the variable agricultural potential of soils. 36(1): 86-94.

52. Foy, T.J. (1993). Urbanization and the urban poor – Vanuatu's food security challenge. 36(1): 95-104.

53. Sillitoe, P. (1993). Soil and cultivation in the Papua New Guinea Highlands. II. A comparison of indigenous and scientific perspectives. 36(2): 1-21.

54. Onaga, I. (1993). The total mercury concentrations in fish from certain southern coastal waters and North Solomons Province of Papua New Guinea. 36(2): 22-28.

55. Majer, J.D. and Queiroz, M.V.B. (1993). Distribution and abundance of ants in a Brazilian subtropical coffee plantation. 36(2): 29-35.

56. Rolston, L.H.; Aalbu, R.L.; Murray, M.J. and Rider, D.A. (1993). A catalog of the *Tessaratomidae* of the world. 36(2): 36-108.

57. Evara, R. (1994). Working for a better tomorrow for agriculture in Papua New Guinea. 37(1): 7-8.

58. Caruthers, F. (1994). Management of agriculture sector in PNG economy. 37(1): 9-14.

59. May, R. (1994). Delivery of agricultural services in PNG: ADB's perspective. 37(1): 15-18.

60. Setae, M. (1994). Strategies and options towards the next decade – DAL views. 37(1): 19-24.

61. Menz, K.M. (1994). Pros and cons of agricultural research in developing countries – a prospect. 37(1): 25-29.

62. French, B.R. (1994). Technology assessment and transfer for sustainable agriculture and rural development – an FAO global view. 37(1): 30-31.

63. Sitapai, E.C.; Wayi, B.M. and Ghodake, R.D. (1994). The Papua New Guinea national agricultural research system: Its policy framework and development perspective. 37(1): 32-40.

64. Ihekoronye, A. (1994). Meeting the developmental challenges of the livestock industry in Papua New Guinea. 37(1): 41-43.

65. Bakau, B.J.K. and Galgal, K.K. (1994). Livestock research and development in Papua New Guinea. 37(1): 44-48.

66. McKillop, B. (1994). Extension performance management: International trends for the 1990s. 37(1): 49-55.

67. Bakani, F. (1994). Reorganization of agricultural extension services in Papua New Guinea. 37(1): 56-67.

68. Daur, L. (1994). Agriculture extension services in Madang. 37(1): 68-70.

69. Mopafi, I. (1994). Agriculture extension and Associated factors in Eastern Highlands Province. 37(1): 71-72.

70. Hamou, K. (1994). Agricultural extension services in Manus Province. 37(1): 73-83.

71. Gumoi, M. (1994). The role of price subsidies in agriculture in Papua New Guinea. 37(1): 84-91.

72. Fernando, N. (1994). Improving rural institutional finance: Some lessons. 37(1): 92-103.

73. Kannapiran, C. (1994). Sustainable rural credit for agricultural development in PNG. 37(1): 104-116.

74. Longimire, J. (1994). Marketing systems for agriculture: Diagnosing problems and price and market analysis for Papua New Guinea. 37(1): 117-132.

75. Mangiia, F. (1994). Proposed Market Research and Intelligence Service Branch. 37(1): 133-138.

76. Ivens, R.J. (1994). Quarantine – a client oriented approach. 37(1): 139-146.

77. Kanawi, D.; Bannick, A. and Kula, G. (1994). The process of quarantine in PNG and its present status. 37(1): 147-151.

78. Jones, A. (1994). The development of small-scale food processing enterprises. 37(1): 152-162.

79. Pondikou, P. (1994). Human resource development in agriculture sector – DAL's projections. 37(1): 163-167.

80. **Hua, H.T.** (1994). Agricultural information and publication systems and services. 37(1): 168-173.

81. **Erai, H. and Kumar, R.** (1994). Agricultural Information and Publication systems and Services (AI&PSS) suitable for PNG needs. 37(1): 174-177.

82. **Kaptigau, J.** (1994). Resolutions and recommendations arising from the consultative Seminar. 37(1): 178-180.

83. **Camarotto, C. and Bourke, R.M.** (1994). Potential for exporting fruit from Papua New Guinea to overseas markets during their off-seasons. 37(2): 2-13.

84. **Rodoni, B.C.; Dale, J.L. and Harding, R.M.** (1994). Review of alomae disease of taro. 37(2): 14-18.

85. **Sajjad, M.S.** (1994). Comparative study on ratooning potential of standard rice varieties of PNG. 37(2): 19-22.

86. **Dowling, A.J.; Konabe, B. and Tigat, R.** (1994). Nutritional assessment of steeply sloping soils from Aiyura in the Eastern Highlands of Papua New Guinea. 37(2): 23-29.

87. **Smith, E.S.C.** (1994). Notes on two minor insect pests in the Highlands region. 37(2): 30-35.

88. **Kuniata, L.S. and Nagaraja, H.** (1994). Insects of the giant sensitive plant (*Mimosa invisa*) at Ramu, Papua New Guinea. 37(2): 36-39.

89. **Pitala, J.A. and Sivasupiramaniam, S.** (1994). Effects of goat manure, NPK-fertilizer, insecticides and fungicides, and compost on potato yield at the Yasubé Rural Extension Centre. 37(2): 40-46.

90. **Kuniata, L.S.** (1994). *Cordyceps* sp. An important entomopathogenic fungus of cicada nymphs at Ramu, Papua New Guinea. 37(2): 47-52.

91. **Philemon, E.C.** (1994). An overview of the pathology of genus *Colocasia*. 37(2): 53-61.

92. **Wagih, M.E.** (1994). Fiji disease virus of sugarcane: A review of techniques for its diagnosis and elimination from tissue culture and planting materials. 37(2): 62-66.

93. **Gibson, J.** (1994). The price elasticity of demand for Papua New Guinea exports of cocoa and coffee. 37(2): 67-75.

94. **Laup, S.** (1994). Pests and diseases of shade trees and their relation to cocoa in Papua New Guinea. 37(2): 76-85.

95. **Toreu, B.** (1994). Survey results for PNG cocoa bean quality factors. 37(2): 86-93.

96. **Konam, J.K. and Waine, W.** (1994). The current status of the pink disease (*Corficium salmonicolor*) of cocoa in Papua New Guinea. 37(2): 94-99.

97. **Dowling, A.J.; Blamey, F.P.C. and Hoa, T.** (1995). Limitation to Sweet Potato growth in small volumes of soil imposed by water and nutrient stress, acidity and salinity. 38(1): 2-10.

98. **Akus, W.L. and Nema, R.K.** (1995). Evaluation of twenty five vegetable varieties at Aiyura, Eastern Highlands Province. 38(1): 11-16.

99. **Akus, W.L.** (1995). Evaluation of introduced sweet potato cultivars at Aiyura in the Eastern Highlands of Papua New Guinea. 38(1): 17-21.

100. **Sajjad, M.S.** (1995). Development of modern upland rice (*Oryza saliva* L.) varieties with superior milling and physicochemical trials, for Papua New Guinea. 38(1): 22-30.

101. **Ivancic, A.; Simin, A.; Ososo, E. and Okpul, T.** (1995). Wild Taro (*Colocasia esculenta* (L.) Schott) populations in Papua New Guinea. 38(1): 31-45.

102. **Amoa, B.; Dekuku, R. Chris and Nigo, R.Y.** (1995). Consumer preference of some rice varieties grown locally in Papua New Guinea. 38(1): 46-50.

103. **Roth, Louis M.** (1995). New species of *Allacta*, *Saussure* and *Zehhntner* from Papua New Guinea, Irian Jaya and Sarawak (Blattaria, Blattelidae: Pseudopoglydrominae). 38(1): 51-71.

104. **Sowi, J.W.** (1995). Onion cultivar selection for the lowlands of Central Province. 38(2): 76-83.

105. Louman, B.; Hasagama, M.; Bigol, C. and Gamuna, P. (1995). Regeneration and residual stand after wokabaut somil operations in seasonally inundated forest near Lae, Papua New Guinea. 38(2): 84-93.

106. Young, G.R. and Kuniata, L.S. (1995). The population dynamics of the borer, *Sesamia griseascens* Walker (Lepidoptera: Noctuidae), on sugarcane in the Ramu valley of Papua New Guinea. 38(2): 94-101.

107. Kanua, M.B. (1995). A review of properties, nutrient supply, cultivation and management of volcanic soils, with particular reference to Papua New Guinea. 38(2): 102-123.

108. Sajjad, M.S. (1995). Influence of different N, P, K doses on yield and yield components of two standard rice varieties of PNG under lowland field conditions. 38(2): 124-129.

109. Young, G.R. (1996). An association between the crazy ant *Anoplolepis longipes* (Jerdon) (Hymenoptera: Formicidae) and the coconut spathe moth, *Tirathaba rufivena* (Walker) (Lepidoptera: Pyralidae) on coconut palms in the Morobe Province of Papua New Guinea. 1. Surveys to determine the extent of crop loss and the incidence of natural enemies of the moth. 39(1): 1-6.

110. Young, G.R. (1996). An association between the crazy ant *Anoplolepis longipes* (Jerdon) (Hymenoptera: Formicidae) and the coconut spathe moth, *Tirathaba rufivena* (Walker) (Lepidoptera: Pyralidae) on coconut palms in the Morobe Province of Papua New Guinea. 2. The effects on yield and nut shedding of ant and moth exclusion. 39(1): 7-11.

111. Okpul, T. and Ivancic, A. (1996). Hybridization of taro (*Colocasia esculenta*) (L. Schott): Floral development and stigma receptivity. 39(1): 12-18.

112. Allotey, J. and Kumar, R. (1996). Reproductive strategy of the parasitic wasp *Bracon hebetor* (Say) (Hymenoptera: Braconidae) on the rice moth *Corcyra cephalonica* (Staint). 39(1): 19-21.

113. Rolston, L.H.; Rider, D.A.; Murray, M.J. and Aalbu, R.L. (1996). A catalog of the *Dinidoridae* of the world. 39(1): 22-101.

114. Darkoh, M.B.K. (1996). Papua New Guinea, an archipelago nation under environmental stress. 39(1): 102-117.

115. Amoa, B.; Fuba, S.; Nigo, R.Y. and Dekuku, R. Chris (1996). Physioco-chemical and organoleptic properties of traditional rice varieties from Finschafen. 39(2): 1-5.

116. Ivancic, A. and Okpul, T. (1996). A new mutation of taro (*Colocasia esculenta*) observed at Bubia Agricultural Research Centre. 39(2): 6-9.

117. Young, G.R. (1996). The crazy ant, *Anoplolepis longipes* (Jerdon) (Hymenoptera: Formicidae) on coconut palms in New Guinea. 39(2): 10-13.

118. Sivasupiramaniam, S.; Benjamin, A.K. and Pitala, J.A. (1996). Effect of sheep manure and Phosphorus fertilizer on potato and succeeding maize and cassava crops. 39(2): 14-19.

119. Saulei, S.M. (1996). A bibliography of the flora and vegetation of Papua New Guinea. 39(2): 29-168.

120. Kuni, T. and Hartemink, A.E. (1997). Soil chemical properties under primary forest and coffee in the Kutubu area of Papua New Guinea. 40(1-2): 1-5.

121. Hartemink, A.E.; Johnston, M.; John, P.; Julias, W. and Kerru, A. (1997). Biomass production and nutrient uptake of taro roots. 40(1-2): 6-12.

122. Okpul, T.; Ivancic, A. and Simin, A. (1997). Evaluation of leaf blight resistant taro (*colocasia esculenta*) varieties for Bubia, Morobe Province, Papua New Guinea. 40(1-2): 13-18.

123. Gunua, T.G. (1997). Effect of contaminants in tissue cultures of taro (*Colocasia esculenta*). 40(1-2): 19-21.

124. Gunua, T.G. (1997). Foliar diseases of taro in the Wahgi Valley of the Western Highlands Province of Papua New Guinea. 40(1-2): 22-26.

125. Taramurray, P. and Onwueme, I.C. (1997). Generation of taro (*Colocasia esculenta*) planting materials using treated split corm apices. 40(1-2): 27-31.

126. **Mubyana, T. and Saulei, S.M.** (1997). Vascular arbuscular mycorrhizae-tru association of Varirata National park and the influence of vegetation types. 40(1-2): 32-39.

127. **Evans, C. and Tumi, C.** (1997). Assessment of the prawn resources of orangeric Bay, Milne Bay Province. 40(1-2): 40-46.

128. **Humphreys, G.** (1998). A review of some important soil studies in Papua New Guinea. 41(1): 1-19.

129. **Freyne, D.F.** (1998). Interpreting soil data from Papua New Guinea Resource Information System (PNGRIS). 41(1): 20-28.

130. **Radcliffe, D.J. and Kanua, M.B.** (1998). Properties and management of andisols in the highlands of Papua New Guinea. 40(1): 29-43.

131. **Harding, P.E. and Hombunaka, P.** (1998). A review of coffee nutrition research in Papua New Guinea. 40(1): 44-64.

132. **Hartemink, A.E.; Nero, J.; Ngere, O. and Kuniata, L.S.** (1998). Changes in soil properties at Ramu Sugar Plantation 1979-1996. 40(1): 65-78.

133. **Kanua, M.B.** (1998). The response of three sweet potato cultivars to inorganic fertilizers on an andisol in the highlands of Papua New Guinea. 40(1): 79-84.

134. **Sayok, A.K. and Hartemink, A.E.** (1998). Erosion and soil fertility changes under *Leucaena* intercropped with sweet potato in the lowlands of Papua New Guinea. 40(1): 85-90.

135. **Louman, B. and Hartemink, A:E.** (1998). Sweet potato production in hedrow intercropping system in the lowlands of Papua New Guinea. 40(1): 91-98.

136. **Beaudoin-Olivier, L.; Prior, R.N.B. and Laup, S.** (1998). A field key to identify some Rhinoceros and other beetle larvae breeding in coconut palm habitats in Papua New Guinea. 41(2): 1-15.

137. **Manua, Peter A.** (1998). Production performance: an economic analysis of smallholder coffee producers. 41(2): 16-20.

138. **Sopade, Peter A.** (1998). The performance characteristics of a typical pilot-scale tray drier. 41(2): 21-26..

139. **Kumar, R.** (1998). Method of assessing losses in stored food products. 41(2): 27-31.

140. **Gunua, T.G.; Kokoa, P. and Darie, A.** (1998). Effect of mixed planting of taro blight resistant varieties on the disease and yield of a preferred susceptible taro variety. 41(2): 32-36.

141. **Gibson, John** (1998). Urban demand for food, beverages, betelnut and tobacco in Papua New Guinea. 41(2): 37-42.

142. **Evans, C.R.; Kare, B.D.; Baule, L. and Jumbi, M.** (1998). Field studies in the depth distribution of recruit-sized prawns *Penaeus merguiensis* and *P. monodon* in the Gulf of Papua: Implications of management. 41(2): 43-57.

143. **Poloma, S.; Onwueme I.C. and Johnston M.** (1999). Propagation of lesser yam (*dioscorea esculenta*) using vine cuttings. 42(1-2): 3-6.

144. **Gunua, Tony G. and Kokoa Pere** (1999). Effect of different types of fungicides an early blight and yield of tomato. 42(1-2): 7-14.

145. **Aregheore, Eroarome M.** (1999). Anti-quality and toxic components in some food plants consumed by humans and livestock in the South Pacific region: Review. 42(1-2): 15-21.

146. **Gunua, Tony G.** (1999). Field evaluation of fungicides against Purple Blotch (*Alternaria porri*) of bulb onion (*Allium cepa*). 42(1-2): 23-26.

147. **Johnston, M. and Onwueme, I.C.** (1999). Productivity of lesser yam (*Dioscorea esculenta*) in PNG as influenced by sett weight and staking. 42(1-2): 27-34.

148. **Sipou, R. Gubag and Ormolos, A.D.** (1999). Organoleptic Characteristics of Sapal: A traditional fermented taro (*Colocasia esculenta*) corm and coconut cream mixture from Papua New Guinea. 42(1-2): 35-37.

149. **Bamba, J.; Cruz, J.A.; Diambra, O.H. and Muniappan, R.** (1999). Research Note: Head Cabbage variety study for tipburn resistance. 42(1-2): 38-39.

150. **Prime Minister, Rt. Sir Moraata, Mekere Kt., MP.** (2000). Speech at the Opening of Policy and Strategy 2000 and the 17th National Agriculture Council Conference Lae, 07 August 2000. 43(1): 5-8.

151. Honourable Avei, Moi MP. (2000). Planning for National Economic Growth through Agriculture. 43(1): 9-11.

152. Honourable Nali, Michael MP. (2000). Agriculture Trade. 43(1): 12-15.

153. Honourable Philemon, Bart MP. (2000). Transport – Key to Agriculture Development. 43(1): 16-18.

154. R. Honourable Sir Somare, Michael GCMG, MP. (2000). Agriculture and the Bougainville Peace Process. 43(1): 19-23.

155. Boeha Beno. (2000). Sustainable Agriculture Credit. 43(1): 24-26.

156. Wenge Kino and Gwaiseuk William. (2000). Agriculture Policy and Strategies for Economic Growth. 43(1): 27-34.

157. Tololo, Alkan, KBE.; Ghodake, R.D. and Kambori Valentine. (2000). Focus for Agricultural Research in PNG.

158. Lahis, Sam. (2000). Strategic directions for the Papua New Guinea Cooperative Extension system in the New Millennium. 43(1): 45-57.

159. Kumar, Ray (2000). Importance of Agricultural Information. 43(1): 58-63.

160. Franklin, Phil. (2000). Agriculture Marketing. 43(1): 64-66.

161. Golding Wayne. (2000). Downstream Processing of Agriculture products. 43(1): 67-68.

162. Waghi Mohammed. (2000). Biosafety Regulatory Policy in Biotechnology. 43(1): 69-76.

163. Mazewin Yawal. (2000). Projects for Palm Oil Industry. 43(1): 77-81.

164. Kopi Pugma. (2000). Current status and prospects for Coffee Industry in the New Millennium. 43(1): 82-88.

165. Namaliu Robinson. (2000). The PNG Coconut Industry in the New Millennium. 43(1): 89-94.

166. Galrich Rahman. (2000). Prospects for Rubber Industry. 43(1): 95-101.

167. Tulo, Sam, OBE. (2000). Prospects for Cocoa Industry in the New Millennium. 43(1): 102-107.

168. Waisime, Michael. (2000). Prospects for a Spice Industry in Papua New Guinea. 43(1): 108-119.

169. Bubar, Gony. (2000). Prospects for a Papua New Guinea Livestock Industry (Cattle). 43(1): 120-122.

170. Hargreaves, Bob. (2000). Prospects for Fresh Produce Industry. 43(1): 123-127.

171. Takendu, Daniel. (2000). Quality Control in Agricultural Industry. 43(1): 128-134.

172. Maru, Richard and Auntari, Caspar. (2000). Smallholder Agriculture Credit Scheme. 43(1): 135-143.

173. Setae, Miri, MBE. (2000). Policy and Strategy. 43(1): 144-149.

174. Honourable Zeming, Mao, MP. (2000). Agriculture Policy and Strategies. 43(1): 150-151.

175. Bang, S. and Wiles, G.C. (2001). The Control of Bacterial Wilt (*Ralstonia solanacearum*) of potato by crop rotation in the Highlands of Papua New Guinea. 44(1-2): 5-11.

176. Sillitoe, P. (2001). Demographic study of pig management in the Southern Highlands Province, Papua New Guinea. 44(1-2): 12-32.

177. Sopade, P.A., Kuipa, W. and Risimeri, J.B. (2001). Evaluation of selected food properties of white yam (*Dioscorea rotundata*) in Papua New Guinea. 44(1-2): 33-43.

178. Pitala, J. (2001). Effect of different plant spacings on the yield and yield components of rice variety nupela under rainfed field conditions at Erap station. 44(1-2): 44-48.

179. Julien, Mic. H. and Orapa, W. (2001). Insects used for biological control of the aquatic weed water hyacinth in Papua New Guinea. 44(1-2): 49-60.

180. Dekuku, R.C. (2001). Constraints analysis of the rice and grain industry in Papua New Guinea. 44(1-2): 61-65.

181. Dekuku, R.C. (2001). Pilot phase rice production in Markham valley of Papua New Guinea shows great promise. 44(1-2): 66-75.

182. Bang, S.K. and Lutulel, R. (2001). The performance of granola potato at four sites in the Highlands of Papua New Guinea. 44(1-2): 76-78.

183. Ajuyah, A.O. (2002). Performance and economic evaluation of broiler chickens fed two cultivars of cassava. 45(1-2): 7-12.

184. Aregheore, E.M. and Yahaya, M.S. (2002). Effect of fresh leucaena (*Leucaena leucocephala*) leaf supplementation on the growth of young Anglo-Nubien crossbred goats feeding either batika (*Ischaemum anistatum* var. *Indicum*) and guinea (*Panicum maximum*) grass. 45(1-2): 13-18.

185. Bino, B. and Kanua, M.B. (2002). Growth litter yield and litter nutrient composition of *Casuarina oligon* in Papua New Guinea Highlands. 45(1-2): 19-23.

186. Ero, M.M. (2002). Host plants of *Amblypelta* (Coreidae: Heteroptera) in Papua New Guinea. 45(1-2): 25-31.

187. Okpul, T.; Singh, D.; Wagih M.E. and Hunter D. (2002). A review of taro (*Colocasia esculenta*) (L.) Schott genetic resources of Papua New Guinea. 45(1-2): 33-45.

188. Kokoa, P. (2002). Alternaria stem and leaf blight of sweet potato (*Ipomoea batatas* (L.) Lam.): a new disease in the highlands of Papua New Guinea. 45(1-2): 47-51.

189. Ignatius, S. and Quartermain, A. (2002). Evaluating high and low nutrient density feed for finishing stages of muscovy broiler ducks. 45(1-2): 53-57.

190. Mararuai, A.; Allwood, A.; Balagawi, S.; Dori, F.; Kalamen, M.; Leblanc, L.; Putulan, D.; Sar, S.; Schuhbeck, A.; Tenakanai, D. and Clarke, A. (2002). Introduction and distribution of *Bactrocera musae* (Tryon) (Diptera: Tephritidae) in East New Britain, Papua New Guinea. 45(1-2): 59-65.

191. Pitala, J.A.; Blair, G.J. and Till, R.A. (2003). Elemental sulfur coated fertilizer materials as sulfur sources for rice under flooded and non-flooded conditions. 46 (1-2): 3-19.

192. Dekuku, R.C. and Benjamin, A.K. (2003). Constraints and results analysis of the Spice Industry in Papua New Guinea. 46 (1-2): 21-30.

193. Dekuku, R.C. and Anang, J. (2003). Attempts at gaining some understanding of the possible factors that promote HIV/AIDS spread in Papua New Guinea. 46 (1-2): 31-39.

194. Wanamboi, J.G.; Sajjad, M.S.; Beko, A. and Masamdu, R. (2003). Eating quality of promising rice varieties evaluated at several locations in Papua New Guinea. 46 (1-2): 41-45.

195. Akanda, S.I.; Tomda, Y. and Maino, M.K. (2003). Sheath blotch of rice - a new report in Papua New Guinea. 46 (1-2): 47-48.

196. Quartermain, Alan R. (2004). Environmental Implications of Livestock Production in Papua New Guinea. 47 (1-2): 2-10.

197. Macanawai, A.R.; Ebenebe, A.A.; Hunter, D. and Harding, R. (2004). Distribution and Alternative Hosts of Taro Bacilliform Badnavirus in Samoa. 47 (1-2): 11-16.

198. Wossa, Steward W.; Rali, Topul and Leach, David N. (2004). Analysis of Essential Oil Composition of some selected Spices of Papua New Guinea. 47 (1-2): 17-20.

199. Kokoa, Pere (2004). Review of Sweet Potato Diseases and Research in Papua New Guinea. 47 (1-2): 21-36.

200. Iramu, E.T.; Akanda, S.I.; Wagih, M.E.; Singh D. and Fullerton R.A. (2004). Evaluation of Methods for screening taro (*Colocasia Esculenta*) Génotypes for Resistance to Leaf Blight Caused by *Phytophthora Colocasiae*. 47 (1-2): 37-44.

201. Pandi J. (2005). Addition of copra meal to commercial feed for broiler chicken production. 48 (1-2): 3-6.

202. Zainudin, E.S. and Sapuan, S.M. (2005). A review of banana Pseudo-stem fibre reinforced composites. 48 (1-2): 7-12.

203. Akanda, S. (2005). Reaction to diseases by four rice varieties in two agro-ecological location in Morobe Province. 48 (1-2): 13-19.

204. **Wossa, S.W.; Rali, Topul and Leach, D.N.** (2005). Analysis of the volatile chemical constituents of tumeric (*curcuma longa* linn: Zingiberaceae). 48 (1-2): 21-24.

205. **Danbaro, G.** (2005). Live weight gains of brahman beef entire males compared with steers implanted with compudose^a. 48 (1-2): 25-27.

206. **Kambuou, R.N.** (2005). Banana varieties tested for Sigatoka disease resistance under irrigated conditions in Papua New Guinea. 48 (1-2): 29-34.

207. **Ero, Mark M.** (2006). The distribution of *amblypelta* stål species (Hemiptera: Coreidae) in Papua New Guinea. 49 (1): 03-06.

208. **Ackonor, J.B; Opoku, G.O.; Godonou, I. and Nkansah, A.** (2006). Prospects of biological control of the cocoa mirid, *Sahibergella singularis* sahl (heteroptera) in Ghana: Field surveys for entomopathogens and laboratory bioassays with *Beauveria bassiana* isolates. 49 (1): 07-11.

209. **Quartermain, A.R.** (2006). Current issues and initiatives in the conservation and management of sheep genetic resources. 49 (1): 13-19.

210. **Kuniata, L.S.** (2006). Integration of insecticides in the management of *sesamia grisescens* warren (Lepidoptera: Noctuidae) in sugarcane at Ramu, Papua New Guinea. 49 (1): 21-29.

211. **Kuniata, L.S.; Chandler, K.J.; Nagaraja, H. and Young G.R.** (2006). Phytophagous insects on broadacre sugarcane in Papua New Guinea. 49 (1): 31-35.

212. **Kuniata, L.S.; Rauka, G. and Magarey, R.C.** (2006). Management strategies for ratoon stunting disease in sugarcane at Ramu Sugar. 49 (1): 37-41.

213. **Risimeri, J.** (2006). Effect of progressive bi-monthly weeding on the yield of yam (*Dioscorea esculenta*) at Saramandi, East Sepik Province. 49 (1): 43-47.

214. **Wossa, S.W.; Rali, T. and Leach, D.N.** (2006). Volatile chemical constituents of patchouli (*Pogostemon cablin* (blanco) Benth.: Labiateae) from three localities in Papua New Guinea. 49 (1): 49-54.

215. **Onaga, I.I.** (2006). Glucosinolates - a literature review. 49 (1): 55-66.

216. **Ero, Mark M.; Clarke, Anthony R.; Wesis, P. and Niagu, B.** (2006). Pest species of the genus *Oribius* Marshall (Coleoptera: Curculionidae) in Papua New Guinea. 49 (2): 3-13.

217. **Danbaro, Gariba; Sivasupiramaniam, Siva and Benjamin, Anton.** (2006). Analyses of birth weight of crossbred lambs at Menifo, Papua New Guinea. 49 (2): 15-18.

218. **Gulf, Joe and Komolong, B.** (2006). Impact Assessment of Three Improved Taro (*Colocasia esculenta*) Varieties in the Morobe Province, Papua New Guinea. 49 (2): 19-27.

219. **Halim, Abdul and Kerua, William.** (2006). Farmers opinion on rice growing in Papua New Guinea. 49 (2): 29-34.

220. **Akanda, Shamsul and Maino, Macquin.** (2006). Incidence and severity of rice diseases in six provinces of Papua New Guinea. 49 (2): 35-40.

AUTHOR INDEX

Aalbu, R.L. (1993) 56 (1996) 113	Bakani, F. (1994) 67	Bubar, Gonny (2000) 169	Dekuku, R. Chris (1995) 102 (1996) 115
	Bakau, B.J.K. (1994) 65	Bull, P.B. (1986) 32	(2001) 180 (2001) 181 (2003) 192
Abdelsamie, R.E. (1986) 35 (1996) 36	Bang, S.K. (2001) 175 (2001) 182	Camarotto, C. (1994) 83	(2003) 193
Abeyasekera, S. (1990) 38	Bannick, A. (1994) 77	Caruthers, F. (1994) 58	Dori, F. (2002) 190
Absalom, P. (1985) 20	Balagawi, S. (2002) 190	Carrick, M. (1993) 45	Dowling, A.J. (1994) 86 (1995) 97
Ackonor, J.B. (2006) 1 208	Baule, L. (1998) 142	Chadhokar, P.A. (1980) 2	D'Souza, E. (1986) 29 (1986) 30 (1986) 31
Ajuyah, A.O. (2002) 183	Beaudoin-Olivier, L. (1998) 136	Chandler, K.J. (2006) 1 211	
Akanda, S.I. (2003) 195 (2004) 200 (2005) 203 (2006) 2 220	Beko, A. (2003) 194	Clarke, A. (2002) 190 (2006) 2 216	Dwyer, P.D. (1993) 42
	Benjamin, C. (1985) 23 (1996) 118	Clarkson, D. (1984) 14	Erai, H. (1994) 81
Akus, W.L. (1986) 31 (1995) 96 (1995) 99	Benjamin, A.K. (2003) 192 (2006) 2 217	Cox, P.G. (1990) 41	Ero, M.M. (2002) 186 (2006) 1 207 (2006) 2 216
Allotey, J. (1996) 112	Bigol, C. (1995) 105	Cragg, S.M. (1993) 44	
Allwood, A. (2002) 190	Bino, B. (2002) 185	Dale, J.L. (1994) 84	Evans, C. (1997) 127 (1998) 142
Amoa, B. (1995) 102 (1996) 115	Bourke, R.M. (1985) 19	Dalzell, P.J. (1986) 33 (1990) 39	Evara, R. (1994) 57
Anang, J. (2003) 193	Boeha, Beno (2000) 155	Danbaro, G. (2005) 205 (2006) 2 217	Fernando, N. (1994) 72
Arentz, F. (1986) 28 (1990) 40	Blair, G.J. (2003) 191	Darie, A. (1998) 140	Foy, T.J. (1993) 52
Aregheore, E.M. (2002) 184	Blamey F.P.C. (1995) 97	Darkoh, M.B.K. (1996) 114	Franklin, Phil (2000) 160
Auntari, Caspar (2000) 172		Daur, L. (1994) 68	French, B.R. (1994) 62
Avei, Moi (2000) 151			Freyne, D.F. (1998) 129

Fuba, S. (1996)	115	Hamou, K. (1994)	70	Ivancic, A. (1995)	101	Kerru, A. (1997)	121
Fullerton, R.A. (2004)	200	Harding, P.E. (1998)	131	Ivancic, A. (1996)	111	Kerua, W. (2006)	2219
Galgal, K.K. (1994)	65	Hargreaves, Bob (2000)	170	Ivess, R.J. (1994)	116	Kokoa, P. (1998)	140
Galrich, Rahman (2000)	166	Hartermink, A.E. (1997)	120	Johnston, M. (1997)	122	Kokoa, P. (2002)	188
Gamuna, P. (1995)	105	Hasagama, M. (1997)	121	John, P. (1997)	121	Komolong, B. (2006) 2	218
Ghodake, R.D. (1994)	63	Hasagama, M. (1998)	132	Jones, A. (1994)	76	Konabe, B. (1994)	86
Gibson, J. (1994)	93	Hoa, T. (1995)	134	Julias, W. (1997)	121	Konam, J.K. (1994)	96
Gibson, J. (1998)	141	Hoa, T. (1995)	97	Julien, Mic H. (2001)	78	Kopi, Pugma (2000)	164
Godonou, I. (2006) 1	208	Holmes, J.H.G. (1980)	120	Jumbi, M. (1998)	179	Kuipa, W. (2001)	177
Gollifer, D.E. (1993)	43	Hombunaka, P. (1985)	21	Kambori, Valentine (2000)	142	Kula, G. (1994)	77
Gollifer, D.E. (1993)	46	Hombunaka, P. (1998)	131	Kalamen, M. (1998)	157	Kumar, R. (1994)	81
Golding, Wayne (2000)	161	Hua, H.T. (1994)	80	Kambori, Valentine (2000)	190	Kuipa, W. (1996)	112
Gragg, S.M. (1993)	44	Humphrey, J.D. (1984)	16	Kalamen, M. (2002)	139	Kuipa, W. (1998)	139
Greve, J.E. van S. (1993)	10	Humphreys, G. (1998)	128	Kambuou, R.N. (2005)	206	Kambuou, R.N. (2000)	159
Guaf, J. (2006) 2	218	Hunter, D. (2002)	21	Kanawi, D. (1994)	206	Kuniata, L.S. (1993)	48
Gumoi, M. (1994)	71	Hunter, D. (2004)	187	Kanawi, D. (1994)	77	Kuniata, L.S. (1994)	88
Gunua, T.G. (1997)	123	Ignatius, S. (2002)	197	Kannapiran, C. (1994)	90	Kanua, M.B. (1995)	106
Gunua, T.G. (1997)	124	Ignatius, S. (2002)	189	Kanua, M.B. (1994)	73	Kanua, M.B. (2006) 1	210
Gunua, T.G. (1998)	140	Ihekoronye, A. (1994)	64	Kanua, M.B. (2006) 1	211	Kaptigau, J. (1994)	211
Gunua, T.G. (1999)	144			Kaptigau, J. (1994)	107	Kaptigau, J. (2006) 1	212
Gunua, T.G. (1999)	146	Iramu, E.T. (2004)	200	Kare, B.D. (1998)	107	Kuni, T. (1997)	120
Gwaiseuk, W.R.J. (1985)	21	Ismay, J.W. (1983)	10	Kare, B.D. (1998)	130	Lahis, Sam (2000)	158
Gwaiseuk, W.R.J. (2000)	156			Kare, B.D. (1994)	185	Lamothe, L. (1990)	40
Halim, A. (2006) 2	219			Karimbaram, R. (1990)	142	Laup, S. (1994)	94
				Karimbaram, R. (1990)	40	Laup, S. (1998)	138
				Kasimani, C. (1990)	41		

Leach, David N. (2004) 198	McGregor, A.J. (1984) 13	Nigo, R.Y. (1995) 102	Pitala, J.A. (1994) 89
(2005) 204		(1996) 115	(1996) 118
(2006) 1 214	McKillop, B. (1994) 66		(2001) 178
Leblanc, L. (2002) 190	Menz, K.M. (1994) 61	Niagu, B. (2006) 2 216	Pippet, J.R. (1985) 22
Lemerie, C. (1980) 7	Minnegal, M. (1993) 42	Nkansah, A. (2006) 1 208	Pondikou, P. (1994) 79
Longimire, J. (1994) 74	Moat, M. (1993) 49	Norris, K.R. (1984) 16	Prior, R.N.B. (1998) 136
Louman, B. (1995) 105	(1993) 50	Okpul, T. (1996) 111	Putulan, D. (2002) 190
(1998) 135	Mopafi, I. (1994) 69	(1996) 118 (1997) 122 (2002) 187	
Lutulel, R. (2001) 182	Moles, D.J. (1984) 14	Onaga, I. (1993) 45	Quartermain, A. (2002) 189
Macanawai, A.R. (2004) 197	Morauta, M. (2000) 150	(1993) 54 (2006) 1 215	(2004) 196 (2006) 1 209
Magarey, R.C. (2006) 1 212	Mubyana, T. (1997) 126	Onwueme, I.C. (1997) 125	Queiroz, M.V.B. (1993) 55
Mahoney, D. (1986) 34	Murray, M.J. (1993) 56	Opoku, G.O. (2006) 1 208	Radcliffe, D.J. (1998) 130
Maino, M.K. (2003) 195	(1996) 113	Orapa, W. (2001) 179	Rali, T. (2005) 204
(2006) 2 220	Muthappa, B.N. (1986) 32		Rali, Topul (2004) 198
Majer, J.D. (1993) 55	Nagaraja, H. (1994) 88	Osillis, P. (1993) 47	(2005) 204 (2006) 1 214
Mangila, F. (1994) 75	(2006) 1 211	Owen, I.L. (1990) 37	Rauka, G. (2006) 1 212
Manus, Peter A. (1998) 137	Nali, M. (2000) 152	Owens, C. (1993) 45	Richards, A. (1984) 15
Mararuai, A. (2002) 190	Namaliu, R. (2000) 165	Pandi, J. (2005) 201	Rider, D.A. (1993) 56
Maru, Richard (2000) 172	Ngere, O. (1998) 132	Parfitt, R.L. (1985) 45	(1996) 113
Masamdu, R. (2003) 194	Nema, R.K. (1995) 98	Philemon, Bart (2000) 153	Risimeri, J.B. (2001) 177
May, R. (1994) 59	Nembou, C.S. (1990) 38	Philemon, E.C. (1994) 91	(2006) 1 213
Mazewin Yawal (2000) 163	Nero, J. (1998) 132		Rodoni, B.C. (1994) 84
			Rolston, L.H. (1993) 56
			(1996) 113

Room, P.M.		Sivasupiramaniam, S	Tulo, Sam	Young, G.R.
(1980)	8	(1994) 89	(2000) 167	(1993) 48
		(1996) 118		(1995) 106
Rose, C.J.		(2006) 2 217	Tumi, C.	(1996) 109
(1980)	1		(1997) 127	(1996) 110
(1980)	3	Smith, E.S.C.		(1996) 117
(1980)	9	(1980) 5	Wanamboi, J.G.	(2006) 1 211
		(1985) 18	(2003) 194	
Roth, Louis M.		(1985) 22		Zainudin, E.S.
(1995)	103	(1994) 87	Wagih, M.E.	(2005) 202
			(1994) 92	
Sajjad, M.S.		Somare, Michael	(2002) 187	Zeming, Mao
(1994)	85	(2000) 154	(2004) 200	(2000) 174
(1995)	100			
(1995)	108	Sowei, J.W.	Waine, W.	
(2003)	194	(1993) 47	(1994) 96	
		(1995) 104		
Sapuan, S.M.			Waisime, Michael	
(2005)	202	Sopade Peter, A.	(2000) 168	
		(1998) 138		
Sar, S.		(2001) 177	Wayi, B.M.	
(2002)	190		(1994) 63	
		Street, J.M.		
Saulei, S.M.		(1985) 25	Wenge, Kino	
(1996)	119		(2000) 156	
(1997)	126	Sundberg, P.		
		(1984) 15	Wesis, P.	
Sayok, A.K.			(2006) 2 216	
(1998)	134	Sutherland, J.A.		
		(1985) 24	White, G.A.	
Schuhbeck, A.			(1980) 9	
(2002)	190	Takendu, Daniel		
		(2000) 171	Williams, D.J.	
Setae, M.			(1986) 27	
(1994)	60	Taramurray, P.		
(2000)	173	(1997) 125	Wood, A.W.	
			(1980) 1	
Shepherd, A.		Tenakanai, D.		
(1980)	4	(2002) 190	Wossa, Steward W.	
			(2004) 198	
Sillitoe, P.		Thistleton, B.M.	(2005) 204	
(1993)	53	(1985) 22	(2006) 1 214	
(2001)	176			
		Tigat, R.	Wiles, G.C.	
Simin, A.		(1994) 86	(2001) 175	
(1995)	101			
(1997)	122	Till, R.A.	Wright, A.	
		(2003) 191	(1990) 39	
Singh, D.				
(2002)	187	Tololo, Alkan	Yahaya, M.S.	
(2004)	200	(2000) 157	(2002) 184	
Sitapai, E.C.		Tomda, Y.	Yamb, R.	
(1994)	63	(2003) 195	(1986) 34	
		Toreu, B.		
		(1994) 95		

SUBJECT INDEX

A			
Acidity Varieties	97	three improved taro varieties Morobe Province Milne Bay Province Store food products	218 218 127 139
Agriculture Marketing	160	Asparagus replanting	6
Agricultural Services Delivery	59	B	
Agriculture Policy and Strategies and Economic Growth	156	Bacterial Wilt	175
Agriculture Policy and Strategies	174	Banana lowlands production tested for Sigatoka disease resistance under irrigated conditions	42 206 206
Agriculture Trade	152	Papua New Guinea	206
Agriculture and the Bougainville Peace Process	154	Biological control cocoa mirid	208
Aibika germplasm Rot and fungicides	47 32	Bi-monthly weeding yield of yam Saramandi	213 213 213
Allacta	103	Biomass production	121
Analysis of the rice and grain industry birth weight crossbred lamb	180 180 217 217	Biosafety Regulatory Policy in Biotechnology.	162
Analysis of essential oil composition of selected species	198	Book Reviews climate soils	25 26
Analysis of the volatile chemical constituents of turmeric	204	C	
Anchovies	33	Capsicum mulching potassium	43 43
Andisols properties management Highlands	130, 133 130 130 130, 133	Cassava fertilizer	6
Ants crazy in coffee plantations	109, 110, 117 55	Cassowary germination	40
Assessment Prawn resources Orangeric bay	127 127	Cattle Copper Diptera feed digestability and growth fertility	45 12 21 2, 46

Imperata	3	Copper	
Leucaena toxicity	2	cattle	45
Parasites	37		
Characteristics		Copra	
pilot-scale	138	replanting	8
tray drier	138	Coral Reef	
		fishery data	39
Chemical properties	120	Credit	
		rural	73
Chicken			
bacteria at market	34	Current issues and initiatives	
debeaking	35	conservation	209
eyeworm	17	management	209
nutrition	36	sheep genetic resources	209
vaccination	35		
Cicada		D	
Nymph fungus	90	Demographic study of	
		pig management	176
Cocoa			
bean quality	95	Dinidoridae	113
demand	93		
<i>Phytophthora</i> control	28	Diptera	
pink disease	96	cattle	12
pod suckers,			
insecticides	11	Distribution of	
seedling blight	13	recruit-size prawns	142
shade trees	18, 94	<i>Penaeus merguiensis</i>	142
pests and diseases	18	<i>P. monodon</i>	142
Coconut		Gulf of Papua	142
coconut disorder	5	<i>amblypelta</i> stål species	207
relation	5		
Finschafen	5	D	
Crazy ants and		Downstream processing of	
spathe moths	109, 110, 117	Agriculture products	161
Finschafen disorder	9		
Coconut Industry in the		E	
New Millennium	165	Earthworms	
		Sweet potato	5
Cocoa Industry in the			
New Millennium	167	Economy	
		Management of	
Coffee		agriculture	58
ants in plantations	55		
demand	93	Eggs	
scale insects	27	Preserving quality	49
Kutubu area	120		
Coffee Industry in the		Environmental Stress	
New Millennium	164	Erosion	
		soil fertility	134
Compost		intercropped	134
potato yield	89		
		Export	
		Cocoa and coffee demand	93
		Potential, fruit	83

Extension		G	
Eastern Highlands	69	Germination	
performance trends	66	cassowary	40
reorganisation	67		
services Madang	68		
services Manus	70		
		H	
Eyeworm	17	Human Resource	
		Development	79
F		I	
Farmers opinion		Identify	
rice growing in png	219	rhinoceros	136
Fertiliser		beetle larvae	136
inorganic	29	breeding	136
organic	30		
trial with tumeric	46	Imperata	
Field surveys		cattle production	7
entomopathogens	208		
laboratory biossays	208	Importance of	
Finance		Agricultural Information	159
improving rural	72		
Fish		Information systems	80, 81
mercury	54		
Fisheries		Insecticide	
coral reef data	39	potato yield	89
deep sea, handline	16	cocoa podsuckers	13
Flora of PNG	119		
Food propteties of		Insects	
white yam	176	crop survey	10
Focus of		highlands pests	87
Agricultural Research	157	<i>Mimosa</i>	88
Food Processing	78		
Food Security	52	Insects used for biological control	
Fresh Produce Industry	180	of the aquatic weed	
Fruit		water hyacinth	179
export potential	83		
Fungicides		Intergration of insecticides	
aibika rot	32	management of	
potato yield	89	<i>sesamia grisescens-warren</i>	210
early blight	144	sugarcane	210
yield of tomato	144	Ramu	210
Fungus			
cicada nymph	90	Replanting	4
		copra	4
		plantations	4
		K	
Fungicides			
aibika rot	32	Key to Agriculture	
potato yield	89	Development	153
early blight	144		
yield of tomato	144	L	
Fungus		Leucaena	
cicada nymph	90	cattle toxicity,	
		fertility	
			2, 3

Literature review	215	O	
Glucosinolates	215	Oil Palm	
Livestock		insects	4
industry challenges	64		
research and			
development	63, 65	Onions	
		cultivar selection	104
M			
Maize		P	
fertiliser	29, 30	Parasites	
Management strategies	212	cattle	37
Stunting disease	212		
sugarcane	212	Pathology	
Mangrove		taro	91, 101
wood break down	44		
Manure		Pest species	
potato, maize,		genus	216
cassava	118	Oribius Marshall	216
Market		Papua New Guinea	216
Influences of large-			
scale small-		Phytophthora	
holders	23	control in cocoa	28
diagnosing		distribution	17, 55
problems	74	key	28
proposed research		fungicides	11, 32, 39
service	75	morphology	28
Mercury		<i>Phytophthora</i>	
fish	54	<i>colocasiae</i>	11, 28
Method of assessing	139	Phytophagous insects	211
Methods for		broadacre sugarcane	211
screening taro	200		
Mimosa		Pigs	
sensitive plant		sweet potato as	
insects	88	feed	50
Mites	14		
Moth		Pilot phase rice	
Rice	112	production	181
Mulching			
capsicum	43	Planning of	
		Agriculture	60
N		Planting material	
Nutrient stress		virus elimination	92
sweet potato	50, 97		
Nutrient		Potassium	
taro roots	121	capsicum	43
		Policy and Strategy	173
Potato		PNG Cooperative Extension	
yield		system in the New	
crop rotation		Millennium	158

Papua New Guinea		sweet potato disease	199
Livestock Industry	169	taro	187
		banana Pseudo-stem fibre	202
Price subsidies	71	Rice	
Primary forest	120	fertiliser	108
Processing of		properties	115
Agriculture Products	161	consumer	
		preference	102
Production		ratooning	85
sweet potato	135	superior milling	
intercropping	135	varieties	100
performance	137	Rice diseases	
economic	137	incidence & severely in	
coffee	137	six provinces	220
broiler chicken	201	Papua New Guinea	220
Propagation of		Rice variety nupela	
lesser yam	143	under rainfed field	178
vine cuttings	143	S	
Projects for Palm		Salinity	
Oil Industry	163	sweet potato	97, 99
Prospects for		Saussure	103
Rubber Industry	166	Shade Trees	
Pumpkin		pests and diseases	18
pollination	24	Sheath blotch of rice	195
<i>Phytophthora</i>	11, 15	Sheep	
Q		growth rates and	
Quarantine	76, 77	parasites	20
Quality Control in		Smallholder Agriculture	
Agricultural Industry	171	Credit Scheme	172
R		Small holders	
Rainfall	38	market influences	23
Reaction to diseases		Soil	
rice varieties	203	appraisal –	
Regeneration	105	indigenous	
Research	61, 75, 116	cultivation,	
Resistance to		indigenous and	
leaf blight	200	scientific	53
Report on		slopping, nutrition	86
Sheath blotch of rice	195	volcanic	107
Review		Soil data	
coffee nutrition	131	interpreting soil	129
research	131, 199	resource informative	
		system	129
		Soil studies	
		review	128

Spice Industry in Papua New Guinea	168, 192	Transport Key to Agriculture Development	154
Stylo cultivar comparison	2	Tumeric fertiliser trials	29, 30
Subsidies	71	U	
Subsistence Agriculture intensification	29, 30, 31	Urbanization	52
Sugar cane Fiji virus borers	92 106	Urban demand for food beverages betelnut tobacco	141 141 141 141
Sustainable of Agriculture Credit	155	V	
Sweet potato acidity	97	Vanuatu	52
crop rotation	31	Vegetables	4
cultivar trials	31	Volatile chemical constituents of patchouli	214
earthworms introduced	5 30, 31	W	
nutrient stress	97	Wasp <i>Brachon herbator</i>	112
production	5	Water stress sweet potato	97
research	19	Weevil Borer control	48
salinity	97	Wokabaut Somil	15
water stress	97	Wood break down	44
Alternaria stem leaf blight	188	Z	
	188	Zehntner	103
T			
Taro			
Alornae disease	84		
Hybridisation	111		
Leaf blight	41, 122		
Varieties	122, 140		
Contaminants	123		
tissue cultures	123		
Foliar disease	124		
planting material	124		
treated split corm apices	125		
Taro blight resistance	140		
Tea			
<i>Heliopeplus</i> damage	22		
Technology Transfer	62		
Tessaratomidae	56		
Tissue Culture virus elimination	92		

INSTRUCTIONS FOR CONTRIBUTORS

Papers must usually contribute to the advancement of knowledge in the discipline(s) concerned but short papers discussing techniques or published results, notes, bibliographies, book reviews and invited reviews of current knowledge in selected areas of interest to the journal would also be considered for publication. Proceedings of seminar/meetings/workshops/symposia and conferences of adequate standard and of interest to the Journal may also be considered for publication. Articles offered for publication elsewhere or published previously will not be considered. All material submitted for publication will be refereed, reviewed and edited to meet the standards of the journal.

Copyright for material transfers to the Journal on publication. For permission to reproduce material from the Journal apply to the Editor.

1. Presentation - Papers should be doubled-spaced throughout with wide margins on both sides. A4 size paper should be used. Send the top copy plus two photocopies to the editor of the journal. Captions to plates and figures must be typed on separate sheets. All pages of typing including references, appendices, captions and tables should be numbered consecutively at the top right.

2. Title - The title should be as brief as possible but should clearly indicate the content. It is not necessary to start the title with "A Or "The ... or other non-significant words.

3. Author's name - First names or initials can be used according to the preference of the author. However, authors are strongly advised to use the same style for their name in all publications to avoid giving the impression that they are two or more different authors. The address of each author at the place where the work was done is given in a footnote. If there has been a change of address, the present address is also given for the first author.

4. Abstract - An informative abstract suitable for use by abstracting services should precede the introductory paragraph. Because it is not a part of the paper, an abstract should be intelligible on its own and should summarise the contents and conclusions of the paper. It should be written as simply as possible to assist people who are not specialists. It should not include unfamiliar terms, acronyms, trade names, abbreviations of symbols without explanation. The abstract should not

exceed 2% of the total extent of the contribution, maximum 200 words.

5. Key words - A short list of key words should be provided for rapid scanning of the contents of the paper and use by abstracting agencies/journals.

6. Headings - In experimental papers the general order of headings is: Abstract, Introduction, Materials and Methods, Results, Discussion, Acknowledgements, References, Appendix. In descriptive, or other types of papers, as far as possible, a similar format should be followed. No headings should be underlined.

7. Text - Papers should be concise. Extensive introductions referring to the work of earlier authors should be avoided. Lengthy discussions and detailed descriptions should be reduced by the use of tables and diagrams. The text should not repeat in detail what is apparent from a table or diagram.

Names of countries or organizations may be abbreviated to capitals without full stops but must be given in full at the first mention.

Numbers under 11 should be spelt out unless qualifying a unit of measurement. If a number over 10 and a number under 11 appear in the same sentence, both are written as numerals. Do not begin a sentence with a numeral. Fractions should be given as decimals or spelt out. All decimal numbers less than unity should have a zero before the decimal marker, e.g. 0.25. All units should be in the S.I. System.

All scientific names of animals and plants must be underlined to indicate that they should be set in italic type or written in italics. The authority should be cited in full on the first occasion a scientific name is used. Where the same name is used repeatedly, the genus may be abbreviated to a capital letter after the first citation. For example, use *Homo sapiens* Linnaeus on the first occasion and *H. sapiens* thereafter.

Common or local names may be used but the scientific name should be quoted on the first occasion. An agricultural chemical must be referred to by its generic or common name when it is first quoted.

8. Tables - Numerical results should be displayed as means with relevant standard errors rather than as detailed data. Standard errors should be given

to one place of decimals more than the means to which they refer and the number of degrees of freedom should also be quoted. Tables should be complete in themselves so that they can be understood without reference to accompanying text. Each table should have a brief and self explanatory title. The presentation of the same data in tabular and graphic form is not permitted.

9. Figures and photographs - Line drawings should be drawn in black water-proof ink on smooth tough paper. Labeling should be clear and always produced with stencils using black water-proof ink and should be legible when reduced. No alterations or additions to artwork can be made by the editors. Figures should be no larger than an A3 page, and no smaller than final published size. Photographs should be glossy prints of good quality and must make a definite contribution to the value of the paper. Indicate the top of the figures and photographs on the back: the plate number of each figure and photographs, the author's name, and the title of the paper. Do not write on the back of photographs: use an adhesive label with the data previously written on it. Artwork should be of appropriate proportions for the final dimensions.

10. Acknowledgements - The names, initials and place of work of those the author wishes to mention may be included. It is unnecessary to mention everyone who has been marginally involved in the work.

11. References - These should be cited in the text by the author's name and data as follows:

"Moran and Brown (1965) showed or "Various works" (Miller and Smith 1956; Adams *et al.* 1960; Wilson 1978, 1979 a) found ..." The term *et al.* should be used when there are more than two authors. The letters a,b,c, should be used to distinguish several papers by the same author in one year.

All references in the bibliography should be given in full and in alphabetical order. For a journal the reference should include surname and initials of all author(s), (year), title of paper, full title of the journal, volume, (part) and full page numbers. For a book the reference should include author(s) surnames and initials, (year), title of chapter and page numbers if appropriate, full title of book, published and city and total page numbers. Conference proceedings should include the year and place of the conference. The title of the journal or book is underlined to be printed in italics. Examples:

Bowet, C.M. and Smith, L.N. (1950). Measurement of phosphorus. *Methods of Soil Analysis*. C.A. Lack. Ed. Department of Primary Industry, Port Moresby.

Sanders, A.J. (1940). Plant responses to Molybdenum. *Papua New Guinea Agricultural Journal* 48(4): 981-995.

Troben, M.M. (1973). Genetic fine structure in *Drosophila*. *Department of Primary Industry Research Bulletin No. 102*: 196-197.

Vance, P.N. (1976). Maize in the Markham Valley. Pp. 215-220. In: *1975 Papua New Guinea Food Crops Conference Proceedings*. K. Wilson and R.M. Bourke (Ed.). Department of Primary Industry, Port Moresby.

Internal reports, communications and memoranda are not valid references. The criteria for valid publications (in the scientific world) are that publications are distributed widely among those interested in the subject and are available to the international public in major libraries and from the publisher. This therefore excludes reports circulated only within a department and to a few outsiders and conference documents available only to those who attended the conference and the like.

Work that has not been accepted for publication (unpublished data) and personal communications are not included in the list of references but may be referred to in the text. References cited in an appendix should be included in the list of references at the end of the paper.

Special care should be taken to see that every reference in the text is included in the list of references and vice versa, and that there is consistency in the spelling of author's names and the citation of the dates throughout the paper.

12. Review of papers - All papers will be submitted to suitable professional referees. Major changes will be referred to the author for consideration. Minor editorial changes will be made without consultation but will be presented to the author(s) at proof stage. The final decision to accept or reject a paper, rests with the Editor.

13 Offprints - Twenty-five free off-prints are given to the author. Where there are several authors, the first author will be sent the off-prints. Extra off-prints may be ordered at the time the galley proofs are returned to the editor. Costs will be determined at the time of printing.

14. Recognised abbreviations in this journal are:

g	- gram
kg	- kilogram
t	- tonne
l	- litre
ml	- millilitre
ha	- hectare
mm	- millimetre
cm	- centimeter
M	- metre
a.s.l.	- above sea level
yr	- year
wk	- week
h	- hour
min	- minute
s	- second
k	- kina
n.a.	- not applicable or not available
n.r.	- not recorded
var	- variance
s.d.	- standard deviation
s.e.m.	- standard error of difference
d.f.	- degrees of freedom

Levels of significance

n.s.	- not significant
*	- $0.01 \leq p < 0.05$
**	- $0.001 \leq p < 0.01$
***	- $p < 0.001$

Either kg/ha or kg.ha is acceptable, but large combinations of units should be in the form kg.ha to avoid possible mathematical ambiguity.

15. Submission of manuscripts - All correspondence should be addressed to: Editor, PNG Journal of Agriculture, Forestry and Fisheries, Agricultural Information Branch, Publication Section, Department of Agriculture and Livestock, P.O. Box 2033, Port Moresby, Papua New Guinea or e-mail to dalit@daltron.com.pg and chrisdeku@ yahoo.co.uk