

ISSN 0256-954X

Papua New Guinea

**JOURNAL OF
AGRICULTURE,
FORESTRY AND
FISHERIES**

(Formerly the Papua New Guinea Agricultural Journal)
VOLUME 51 NUMBERS 1 & 2, DECEMBER, 2008

DEPARTMENT OF AGRICULTURE AND LIVESTOCK

PAPUA NEW GUINEA
JOURNAL OF AGRICULTURE, FORESTRY AND FISHERIES

(Abbr. Key Title = P.N.G. j. agric. for. fish.)

(Formerly The Papua New Guinea Agricultural Journal)

Published by the Department of Agriculture and Livestock (DAL)

Editor in Chief : Dr. R. Chris Dekuku
Secretary : Betty Aiga

Department of Agriculture and Livestock, P.O. Box 2033, PORT MORESBY
Papua New Guinea

Editorial Advisory Board

Dr. Michael Bourke (ANU, Canberra)	Mr. Joachim Solien (DAL, Konedobu)
Mr. Anton K. Benjamin (DAL)	Prof. Lance Hill (UPNG)
Dr. Simon Saulei (UPNG)	Dr. John Moxon (CCRI, Rabaul)
Dr. Shu Fukai (Uni. QLD)	Prof. R. Muniappan (Uni. Guam, Guam)
Mr. Lastus Kuniata (Ramu Sugar Ltd)	Dr. Alan Quartermain (Vudal University)
Dr. Gariba Danbaro (UNITECH, Lae)	Mr. Matthew'wela Kanua (PNGSDP)

Published Biannually

Annual Subscriptions

Australia/Asia/Pacific (US\$15.00 by Airmail, US\$14.00 by Surface mail)
Other countries (US\$18.00 by Airmail, US\$15.00 by Surface mail)
Domestic K25.00 by Airmail, K23.00 by Surface mail

(Prices are subject to change without notice)

Copyright © 2008 - Department of Agriculture and Livestock

Opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the view of the Department of Agriculture and Livestock.

DAL PRINTSHOP, TOWN, PORT MORESBY

Cover Design by Jackson Kaumana

PAPUA NEW GUINEA
SCREENING OF FIVE ELM CULTIVARS AGAINST
WENIIFORM JOURNAL OF AGRICULTURE, FORESTRY AND FISHERIES
THE GREEN

(Formerly the Papua New Guinea Agriculture Journal)

Volume 51

Nos. 1 & 2

December, 2008

CONTENTS

	Pages
Screening of five elite sweet potato cultivars against reniform nematode (<i>Rotylenchulus reniformis</i>) in the green house by Gibson Kasi and Shamsul Akanda	03-09
The effect of adding a biding agent to layer diets containing sorghum ergot (<i>Claviceps africana</i>) by G.K.Pranis and J.G.Dingle	11-15
Early Maturing Sweet Potato Varieties for the Highlands of PNG by Bang S, Bagle G, Geob T, Kapal D and Kiara J	17-22
Javanese Zebu Cattle of Papua New Guinea Extinction by neglect by Alan R. Quartermain	23-27
Dry Matter Production of Five Valangur (<i>Polyscias</i> sp.) Varieties by Joachim A.R. Pitala	29-32
<i>Papua New Guinea Journal of Agriculture, Forestry and Fisheries</i> Index	33-54
Instructions to contributors	55-57

SCREENING OF FIVE ELITE SWEET POTATO CULTIVARS AGAINST RENIFORM NEMATODE (*Rotylenchulus reniformis*) IN THE GREENHOUSE

Gibson Kasi and Shamsul Akanda¹.

ABSTRACT

Five elite sweet potato cultivars/lines were screened in the greenhouse for resistance against Reniform Nematode (*Rotylenchulus reniformis*) through artificial inoculation. The cultivars showed varying degrees of above and underground symptoms of nematode infection. The longest vine length of 122.28 cm was observed in RAB36 and the shortest in L676 being 72.85 cm. The RAB36 had significantly lowest number of nematode per gram of soil compared to other cultivars and B11 had the highest. The RAB36 had the highest mean tuber weight of 112.3 g compared to other cultivars and the lowest being 56.2 g in case of B11. The dry weight of the cultivars closely followed the pattern in fresh weight. Ninety per cent nematode mortality was observed in case of RAB36 compared to B11 with only 10 % in phenolic test. The mortality percentage in RAB32, DOY2 and L676 were 85, 50 and 25 respectively. The highest tuber crack of 10% was observed on B11 and only six per cent on L676. No tuber cracking was observed on the cultivars.

Key words: Sweet potato, reniform nematode, phenolic extract, tuber crack.

INTRODUCTION

The sweet potato (*Ipomoea batatas*) is one of the most important food crops of Papua New Guinea (PNG) with an estimated annual production of 1,223,800 tonnes worth K150 million (Bourke 1982 a & b). It is predominantly a subsistence crop, more recently; however, sweet potato has emerged as a significant cash crop (Bourke 1982 a & b). It is the staple food in most highland areas and is increasingly important in parts of lowlands due to its agronomic superiority over the other crops, such as taro and yams. Sweet potato provides between 65-90% of people's energy intake (Bourke 1982a & b; Kimber 1972) and up to 2.5-7.5% (dry weight) of protein intake in some areas (Goodbody 1984).

In recent years, decline in sweet potato yield in Papua New Guinea is a major concern in sweet potato cultivation (Hartemink *et al.* 2000). Diseases are a major constraint to production of sweet potato in many parts of the world, particularly in the temperate regions (Clark and Moyer 1988). Only a few of the most serious diseases of sweet potato are present in PNG, and appear to cause significant crop damage in certain parts of the country (Kokoa 2004).

Plant parasitic nematodes are recognized world wide, as potentially serious constraints to crop productivity. The reniform nematode (*Rotylenchulus* spp.), primarily occurs not only in tropical and subtropical areas but also in some temperate areas. It is one of the destructive pathogens of sweet potato affecting both yield and quality of the crop (Clark and Moyer 1988). Twenty-two different genera of plant parasitic nematodes have been reported to be associated with sweet potato in PNG (Bridge and Page 1982; Kokoa 1986 a & b; Levett *et al.* 1987; Kokoa 1991 a) and plant parasitic nematodes can be a major problem in sweet potato production.

Reniform nematode is an important semi-endoparasitic pest of many crops, especially in warmer climates. It is the principal nematodes damaging cotton in Egypt and in parts of the United States. This nematode also attacks tomato, soybean, and pineapple among others. It is also found in other tropical and subtropical areas of the world where sweet potato is grown (Birchfield and Martin 1965). Host range of *Rotylenchulus* species includes more than 300 species in 77 plant families (Robinson *et al.* 1997).

The population of *Rotylenchulus reniformis* can rise to very high levels, up to almost 10,000/100 cm³ of

soil and the mineral balance of the host is disturbed. The reniform nematode also cause severe cracks on the roots (Clark and Wright 1983) affecting the quality and making it unsuitable for selling and human consumption. The amount and type of damage incurred by *Rotylenchulus reniformis* often depends on the host species and/or cultivars as well as the nematode population. In sweet potato, they may cause surface cracking of tubers (Gaur and Perry 1991).

The *Rotylenchulus reniformis* is present in several Pacific Island nations, including Papua New Guinea and has been rated as an important nematode of sweet potato (Bridge 1988). In Papua New Guinea, there is inadequate information on this pathogen infecting sweet potato.

The prevention of epidemic and ultimately the reduction of losses in terms of yield and quality have been of great concern. Using chemicals may control the diseases, but chemicals create hazards to human health, produce undesirable side effects on non-target organisms and the environment as a whole.

Under the existing circumstances, the use of resistant variety (-ies) is (are) one of the most attractive approaches for the management of plant diseases.

The natural genetic resistance of plants to pest and diseases has no doubt played a key role in crop production since the dawn of agriculture. Their use requires no particular action by the growers during the growth period, is environmentally friendly and sustainable, compatible to other management practices; and is sometimes singularly sufficient to suppress the disease to a tolerable level.

In this regard, it is utmost important to screen the existing cultivars/lines to find resistance sources with higher yield, quality and adaptability before being distributed to the farmers for widespread cultivation. If the growers know the resistance level of the cultivars well before planting, they would know what to expect during the growing season with respect to disease development and probable preventive measures to take.

Hence, a green house trial was conducted to screen five elite sweet potato varieties/lines for resistance against *Rotylenchulus reniformis*.

MATERIALS AND METHODS

Selection of cultivars/lines

Five elite sweet potato cultivars were selected based on tuber shape, tuber skin color, tuber flesh color, time of maturity, flesh of texture and taste after boiling (Table 1).

Table 1. Characteristics of five selected elite sweet potato cultivars used in the study

Accession number, class and origin	Tuber shape	Tuber skin colour	Tuber flesh colour	Time to maturity (months)	Flesh texture after boiling	Taste after boiling**
B 11 1st Class PNG	Proximal end narrow, distal end broad	White	White	4.5	Firm	Not sweet
RAB 36 1st Class PNG	Proximal end narrow, distal end broad	Purple	Orange with white patches	5(best not later)	Firm	Slightly sweet
L 676 1st Class PNG	Fusiform	Purple	White	5	Intermediate	Slightly sweet
RAB 32 1st Class PNG	Proximal end broad, distal end narrow	Pink	Orange with white	4.5(best not later)	Soft	Slightly sweet
DOY 2 1st Class PNG	Fusiform	Purple	White	5	Intermediate	Slightly sweet

** = Showing peoples' preferences in relation to the characteristics.

Soil collection and sterilization

The humus soil was collected, placed and half filled in 44 gallon drum where the soil was sterilized using heat from the fire. It was left over night to cool down.

Pot preparation, vine planting

About two kilograms of sterilized soil was placed in a plastic bag within a plastic pot of 17.5cm diameter and 14.5cm deep. Two vines of about 15 cm in length per cultivar were planted at 5 cm deep in the soil in each of the pots.

Experimental design

The cultivars in the pots were organized in a randomized complete block design with each of the treatments (cultivars) replicated four times.

Nematode isolation and inoculation

The soil was collected from the old sweet potato garden at Wawin High School farm at the Markham Valley at a depth of 10 cm. The collected soil was cleaned and placed on the tissue paper with the strainer underneath and the nematodes were isolated using the Baermann's tray method. A thermometer was set to monitor the room temperature at 27-30°C and left for 72 hours. Later the nematodes were transferred into a beaker and filtered using a 20μm strainer into 20-milliliter vials. From the vials, the nematodes were placed on a counting slide and observed through a microscope using a 40X power lenses. The *Rotylenchulus reniformis* adults and juveniles were selected using a fine point needle and placed into a 5 milliliter vial and kept in a cool room. These juveniles and adult reniform nematode population of 4,000-10,000 were inoculated into the soil in each pot.

Cultural practices

Watering of plants was done regularly to keep the soil at Field Capacity (FC). Over watering was avoided as this would drain out the nematodes from the pots. Weeds growing on the pots were removed manually from time to time. Hand picking of leaf miner was done without any chemical sprays as this would affect the nematodes.

Harvesting of sweet potato

Sweet potato was harvested 10 weeks after planting. Sweet potato plants from each of the pots were removed, the roots were thoroughly washed and placed on a clear plastic to dry so that further

observations on the root gall formation and tuber cracks could be made.

Assessment of parameters

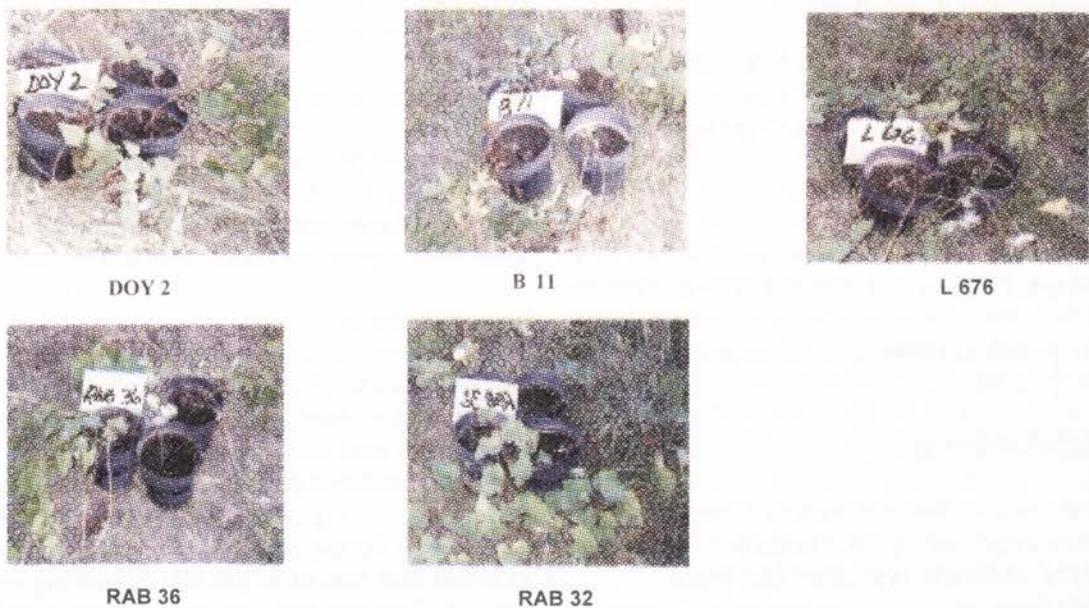
At the time of harvest, data on the following parameters like length of vines, above ground biomass (fresh and dry weights), degree of gall formation, nematode population was recorded.

Phenolic extract

Ten grams of fresh roots from each of the cultivars was taken and ddH₂O added, crushed on the pestle and mortar and centrifuged at 10,000 rpm for 15 minutes. Five milliliters of the supernatant was placed in a plastic vial separately for each of the cultivars. Twenty live larvae (juveniles) of nematodes were selected and placed in the vial containing the root extract. The mortality of the nematodes in the phenolic extract from the roots was observed under the microscope after 30 minutes and the data was recorded. The second reading was taken after one hour, but there was no change in the mortality rate.

Estimation of tuber cracks (%)

The tubers from each cultivar were washed, placed on a clear plastic and examined for any tuber cracks. The percentage of tuber cracks was calculated as equal to the number of cracking tubers divided by the total number of tubers, multiplied by one hundred.


$$\text{Tuber cracks (\%)} = \frac{\text{Number of tuber cracks}}{\text{Total number of tubers}} \times 100$$

Data Analysis

The data was analyzed using the Software Minitab Student Release 12 Version. Data on nematode population, vine length and biomass were subjected to analysis of variance and mean separation to determine the statistical differences among the treatment means.

RESULTS AND DISCUSSION

The general observations from the pot plants showed symptoms of infections by the reniform nematodes (*Rotylenchulus reniformis*) with varying degree of severity on the five elite (Plate 1) sweet potato cultivars in the green house. The cultivar DOY 2 was growing healthy with a couple of dead vines, B 11 cultivar had a few dead vines, stunted growth, leaves were smaller and turning yellow and leaf miner

Plate 1. Cultivars showing above ground symptoms of *Rotylenchulus reniformis* infection under Green house condition.

Plate 2: Cultivars showing symptoms of root infection due to *Rotylenchulus reniformis* infection.

attacking the leaves. The RAB 36 cultivar was growing healthier with long vines, L 676 cultivar had a few dead vines at the base with long vines; and RAB 32 cultivar was growing healthier without any visible symptoms of disease, however, there were a few leaf miner attacking the leaves.

The underground symptoms of *Rotylenchulus reniformis* are shown as varying degrees of deformities/abnormal growth on the tubers (Plate 2).

It is observed that moderate levels of abnormalities in the form of cracks were found in B 11 followed by L 676. The tubers of the other three cultivars looked fresh and smooth without any abnormalities.

The result on the nematode population isolated from each of the cultivars (Table 2) shows that the number of nematodes per kilogram of soil was highest in B11 (308.5) and the lowest in RAB 36 (164.5) and this difference was significant at $p < 0.05$ (LSD). The

Table 2: The parameters used to assess resistance of five sweet potato cultivars to reniform nematode in the green house.

Cultivars	Mean nematode population/kg of soil	Biomass			Phenolic test			Cracking defects (%)
		Length of vines (cm)	Fresh weight (g)	Dry weight (g)	Live (x/20)	Dead (x/20)	Mortality (%)	
DOY 2	186.5c	94.25b	82.4b	75.78b	10	10	50	0
B 11	308.5a	74.95c	56.2d	44.85d	18	2	10	10
RAB 36	164.5c	122.28a	112.13a	95.05a	2	18	90	0
L 676	291.25a	72.85c	62.93cd	52.40cd	15	5	25	6
RAB 32	217.5b	87.05bc	74.18bc	62.78bc	3	17	85	0

number of nematodes in L 676 was 291.25 per kilogram of soil and this was not statistically different from B 11 at pd"0.05 level, however, this was significantly (pd"0.05) higher than DOY 2, RAB 32 and RAB 36. Even though the nematode population was higher in DOY 2 (186.5) than RAB 36, this difference was not statistically significant at pd"0.05 level.

The numbers in a column representing nematode population; vine lengths and biomass weight are the means of four replications.

Means followed by the same letters within a column are not significantly different at Pd"0.05 (LSD).

The mean vine lengths ranged from 72.85cm to 122.28cm (Table 2). The longest vine length of 122.28cm was observed in RAB 36 and the shortest in L 676 being 72.85cm. The vine length in RAB 36

was significantly longer than the rest of the cultivars. The vine length of DOY 2 (94.25cm) was significantly longer than B 11 (74.94cm) and L 676 (72.85) but the vine length difference between DOY 2 (94.25cm) and RAB 32(87.05cm) was non-significant. Similar was the case among B 11, L 676 and RAB 32.

The mean fresh weight (Table 2) was highest in RAB 36 (112.13g) and lowest in B 11(56.2g) and the difference between the two was significant at pd"0.05 (LSD). The fresh weight of RAB 36 was significantly higher than the rest of the cultivars. The fresh weight of DOY 2 (75.78g) was significantly higher than B 11(56.2g) and L 676 (62.93g) but the fresh weight difference between DOY 2 (82.4g) and RAB 32 (74.18g) was non-significant at pd"0.05 level (LSD). Similarly, the fresh weight difference between B 11 and L 676 cultivars are also non-significant. The dry weight of the cultivars closely follows the same pattern as in case of fresh weight.

Phenolic test (Table 2) shows that the highest mortality of 90% was observed in RAB 36 and the lowest mortality of 10% in B 11. The mortality of nematodes in case of RAB 36 (90%) was higher than RAB 32, DOY2 and L 676 that were 85, 50 and 25% respectively.

Table 2 further shows that only two of the cultivars had some tuber cracking. The highest tuber cracking of 10% was observed in case of B 11 followed by L 676 with 6% cracking. No tuber cracking was observed in RAB 32, RAB 36 and DOY2.

The use of varietal resistance is one of the most attractive, cheap, environmentally friendly and sustainable ways for the management of plant disease when highly resistant varieties are available. One of the most important requirements for the development of resistant variety is to screen/test the varieties against the pathogen concern.

Five elite sweet potato cultivars were tested in the greenhouse against the reniform nematodes (*Rotylenchulus reniformis*) through artificial inoculation.

The cultivars showed symptoms of leaf chlorosis, stunted growth (Plate 1) and tuber cracks (Plate 2) with varying level of severity because of the differences in the resistance/tolerance level of the cultivars. Most severe symptoms including stunting, leaf chlorosis, vine death and root deformation/crack was found in B11 and L676. The other cultivars showed very low to no infection at all. Similar results on symptoms development were also described by Thomas and Clark 1983; Robinson *et al.* 1997. The population of nematodes in different cultivars was affected by the resistance of the cultivars as demonstrated by the mortality of the nematodes in the phenolic test. These in turn affected the leaf size, vine length and vine death; leading to the reduction in photosynthetic areas that in turn led to significant yield reduction in susceptible cultivars. The concentration of phenolic compound was quite higher in RAB 36 and RAB 32 compared to the other three cultivars and that affected the nematode numbers on different cultivars.

The changes in leaf morphology are related to inadequate root function. The leaf tissues have compact cell resulting in leaves becoming smaller than normal and absorb less light than healthy leaves (Thomas and Clark 1983; Robinson *et al.* 1997) and this leads to reduced yield. Similar phenomenon might also have been responsible for stunted growth and significant yield reduction in case of B11 and L676 cultivars.

The evidence of root damage on B11 and L676 in the form of crack is quite clear affecting the quality and making unsuitable for selling and human consumption. Similar results were also suggested by Clark and Wright 1983.

Considering the assessment of the various important parameters in the greenhouse trial, RAB 36 could be categorized as resistant, RAB 32 and DOY as moderately resistant, L 676 as moderately susceptible and B 11 as highly susceptible.

The outcome of the greenhouse trial need to be tested in proper field experiments as the results of the greenhouse trials might be affected by the different levels of interaction in the field.

REFERENCES

BIRCHFIELD, W. and MARTIN, W.J. 1965. Effects of reniform nematode populations on sweet potato yields. *Phytopathology*. 55:497.

BOURKE, R.M. 1982a. Sweet potato in PNG. In: *Proc. Int. Symp. of Sweet potato*. AVRDC, Taiwan. pp.46-57.

BOURKE, R.M. 1982b. Sweet potato production and research in PNG. Review paper for subsistence food production and consultancy, Aiyura, HAES, Mimeo. pp 225.

BRIDGE, J. 1988. Plant parasitic nematode problems in the Pacific Islands. *Journal of Nematology* 20: 178-183

BRIDGE, J. and PAGE, S.L.J. 1982. Plant nematodes of Papua New Guinea: their importance as crop pests. *Report of a plant nematode survey in Papua New Guinea*. Commonwealth Institute of Parasitology, England. 91 pp.

CLARK, C.A., and WRIGHT, V.L. 1983. Effect and reproduction of *Rotylenchulus reniformis* on sweet potato selections. *Journal of Nematology* 15:197-203

CLARK, C.A. and MOYER, J.W. 1988. *Compendium of sweet potato diseases*. American Phytopathological Society Press. 74 pp.

GAUR, H.S. and PERRY, R.N. 1991. The biology and control of the plant parasitic *Rotylenchulus reniformis*. *Agricultural Zoology Reviews* 4, 177-212

GOODBODY, S. 1984. Nutritional Characteristics of a sweet potato collection in PNG Highlands. *Journal of Tropical Agriculture (Trinidad)* 6, 1:20-24

HARTEMINK, A.E., POLOMA, S., MAINO, M., POWEL, K.S., EGENAE, J. and O'SULLIVAN, J.N. 2000. Yield decline of sweet potato in the lowlands of Papua New Guinea. *Agriculture, Ecosystems and Environment*, 29 (2000): 259-269

KIMBER, A.J. 1972. The sweet potato in subsistence agriculture. *PNG Agriculture Journal*. 23(3&4): pp. 80-95.

KOKOA, P. 1986a Plant protection report of the rapid rural appraisal of Kaintiba district. The Highlands Food Crops Research Team (HFCRT), Kuk Agricultural Research Station, Department of Agriculture and Livestock, Mt Hagen, Western Highlands Province. HFCRT Research Report (unpublished)

KOKOA, P. 1986b. Plant Pathology report of the rapid rural appraisal of Gumine district (1986). The Highlands Food Crops Research Team (HFCRT), Kuk Agricultural Research Station, Department of Agriculture and Livestock, Mt Hagen, Western Highlands Province. HFCRT Research Report (unpublished).

KOKOA, P. 1991a. Stem and leaf blight. In: 1984-1988. *Annual research report*. Agricultural research Division, Department of Agriculture and Livestock, Konedobu, Papua New Guinea. pp 77-78.

KOKOA, P., RURI, N. and KURUMA, M. 1991. Field screening for resistance to root knot nematode (Meloidogyne spp.). In: 1984-1988 annual research reports. Agriculture Research Division, Department of Agriculture and Livestock, Konedobu, Papua New Guinea. pp55-56.

KOKOA, P. 2004. Review of Sweet potato diseases and research in Papua New Guinea. *PNG Journal of Agriculture, Forestry and Fisheries*. 47 (1&2): 21-33pp.

LEVETT, M.P., CLARE, D., KOKOA, P., KALIT, K., DOCKERY, D.J., ITAGAU, H.J., KERAGE, J.W., GERORO, G., KAVIR, M. and MILALA, F. 1987. A multisectoral rapid rural appraisal of Ivore Swanson census division and Hamdei census division in Kaintiba district of Gulf Province 18 November to 5 December 1986. Department of Agriculture and Livestock, highlands Agriculture Experiment, Aiyura.158pp

ROBINSON, A.F., INSERRA R.N., CASWELL-CHEN, E.P., VOVLAS, N. and TROCCOLI, A. 1997. *Rotylenchulus* species: Identification, distribution, host ranges, and crop plant resistance. *Nematropica* 27: 127-180 pp.

THOMAS, R. J. and CLARK, C.A. 1983. Effects of concomitant development on reproduction of *M.incognita* and *R.reniformis* on sweet potato. *Journal of Nematology*. 15: 215-221.

THE EFFECT OF ADDING A BINDING AGENT TO LAYER DIETS CONTAINING SORGHUM ERGOT (*Claviceps africana*)

G.K.Pranis^{1,2} and J.G.Dingle¹

ABSTRACT

Approximately 25% of the world's cereal grains are contaminated with known mycotoxins. Mycotoxins are now known as hidden killers that produce a wide range of harmful effects in animals and are a threat to humans. The pathogenic effect of aflatoxin (AF) on poultry has been well documented but the effects of a new mycotoxin to Australia, sorghum ergot (SE) (*Claviceps africana*) alkaloid, have still to be fully explored.

This study was undertaken to broaden our understanding of how to combat the effects of subtoxic levels of sorghum ergot alkaloids (SEA) on the egg production of layer chickens. After two weeks on the sorghum ergot diets it was found that laying hens fed a Mycosorb® (Alltech Inc.) supplement had greater feed intakes. After three weeks on the sorghum ergot diets, laying hens fed a Mycosorb® supplement had greater egg production and egg mass than the birds fed the non supplemented ergot diets. The egg production by layers fed the lower protein diets was poorer, but it recovered to be equal to the best production level, when Mycosorb® was added.

It is recommended that layer diets that contain ergot contaminated sorghum should be supplemented with a binding agent such as Mycosorb®.

Keywords: effect, binding agent, layer diets, sorghum ergot (*Claviceps africana*).

INTRODUCTION

Sorghum ergot, a fungal disease of sorghum caused by *Claviceps africana*, produces a toxic alkaloid, dihydroergosine, which has been found to reduce productivity of dairy cattle, pigs and broiler chickens (Blaney *et al.* 1998). Its effect on laying chickens appears to be unknown.

Australia grows and uses sorghum grain as its main ingredient in producing its stock feed and Papua New Guinea imports its sorghum grain from Australia. Sorghum ergot affects the yield and will increase the cost of importing sorghum into Papua New Guinea.

The use of yeast and yeast products as mycotoxin binders was initially found by Professor Devegowda and his group in India, and by others in Canada and the United States of America, to ameliorate the effect of aflatoxin (AF) in chickens and ducklings (Anonymous 2001). Mycosorb® (a yeast product) is shown to be an effective binder, not only for AF but also for zearalenone, ochratoxin and fumonisin

(Devegowda *et al.* 1998). Deo (2000) found that Mycosorb® was a good binding agent for AF and ergot alkaloid in feeds for broiler chickens. No reports on the use of the adsorbent to reduce the effects of ergot alkaloids in laying hens have been published.

In this trial, the effects of sorghum ergot alkaloid on the egg production of laying hens were estimated and Mycosorb® (a binding agent) tested for its efficacy in preventing any negative effects of sorghum ergot alkaloids on laying hens.

MATERIALS AND METHODS

Experimental Design

The experimental design was a 4 x 2 factorial. The factors were (1) level of sorghum ergot alkaloid (24mgkg⁻¹, 12mgkg⁻¹, 6mgkg⁻¹ and 0mgkg⁻¹ alkaloid in the diet) and (2) with or without Mycosorb binding agent in each basal diet. There were six replications in a completely randomized design.

¹School of Animal Studies, The University Queensland, Gatton Campus, Gatton, Queensland 4345 Australia

²Department of Agriculture, The University of Vudal, Private Mail Bag Service, Rabaul, East New Britain Province, Papua New Guinea.

Experimental Diets

Diets were formulated using the programme "User Friendly Feed Formula" (UFFF 1986).

The ingredient content of each treatment diet is shown in Table 1. The nutrient composition of the diets are shown in Table 2.

Half of each basal diet had a toxin binding agent (Mycosorb®) added, thus making eight diets for the experiment.

Assuming that the ergot contaminated sorghum contained 32 mg kg^{-1} sorghum ergot alkaloid (SEA), the SEA of each basal diet was as shown in Table 2.

Bird Management and Measurement

Ninety-six ISA Brown layers (45 weeks old) were housed in wire back-to-back conventional cages. All chickens were fed a commercial layer diet with 17% crude protein and metabolisable energy of 13.8 MJ kg^{-1} for four days. On the fifth day the chickens were weighted and then randomly allocated two per cage to make 48 experimental units. The chickens were

Table 1. Formulation of Basal Diets (percent).

Ingredient	Diet 1 (%)	Diet 2 (%)	Diet 3 (%)	Diet 4 (%)
Sorghum (Ergot) (14.7% CP)	76	38	19	0
Sorghum (Normal) (8.9% CP)	0	38	57	76
Fish Meal (65% CP)	13	13	13	13
Vegetable Oil	2	2	2	2
Limestone	9	9	9	9
Vit & Min Premix *	0.1	0.1	0.1	0.1
DL Methionine	0.1	0.1	0.1	0.1

* The vitamin and mineral premix added the following nutrients to the ration: vitamins A, 9,375 m i u; D₃, m i u; E, 512.5 i u; K, 1,087.5; B₆, 3737.5; Ca pantothenate, 2,200; nicotinamide, 5,000; Cobalt, 660; Copper, 2,200; Iron, 22,000; Manganese, 55,000; Iodine, 883.75; Molybdate, 500; Zinc, 40,000; Sodium, 12,500; Selenium, 45 mg tonne⁻¹.

Table 2. Calculated nutrient content of basal diets (percent)

Nutrient Calculated	Diet 1	Diet 2	Diet 3	Diet 4	Recommended	
					NRC (1994)	ISA Brown (1996)
Crude Protein	19.6	17.6	16.6	15.7	15.0	19.5
ME (MJ kg ⁻¹)	11.4	12.0	12.3	12.6	12.1	11.6
Calcium	3.7	3.7	3.7	3.7	3.25	4.1
Av. Phosphorus	0.38	0.38	0.38	0.38	0.25	0.40
Av. Lysine	0.78	0.79	0.79	0.79	0.69	0.88
Methionine+						
Cystine	0.64	0.64	0.64	0.64	0.58	0.76
Ergot Alkaloid (mg kg ⁻¹)	24	12	6	0		

fed experimental diets *ad libitum* from day 5 to 25. Artificial light was provided from 4.00 pm to 8.00 am (16 hrs).

Weekly feed intake was recorded. Egg were collected and recorded daily and laying percentage calculated. Eggs from one day's production were weighed each week to calculate egg mass and feed conversion ratio. Chickens were monitored daily for signs of sickness and mortality.

Statistical Analysis

The measurements were analysed using ANOVA (SAS Institute, Inc. 1990) and the results of each treatment were expressed as mean \pm standard error (SEM). The significances between the means was estimated from least significant difference (LSD).

RESULTS

The egg laying percentage, average egg weight, egg mass, feed intake and feed conversion ratio (FRC) for the three weeks that the laying hens were fed the experimental diets are given in Table 3, 4 and 5.

In the first week of the trial, there was no significant effect of the level of sorghum ergot alkaloid or of the addition of Mycosorb® on the egg production, egg weight, egg mass, feed intake or FCR of the laying hens (Table 3). The level of production was normal for ISA Brown hens of this age, but feed intake was less than expected.

Table 3. The performance of layer chickens fed SEA and Mycosorb® binding agent (week one).

Sorghum Ergot Alkaloid (mgkg ⁻¹)	Mycosorb®	Egg Production (%)	Av. Egg Weight (g)	Egg Mass (g)	Av. Feed Intake (g/d)	FCR
24	+	80.9	59.3	48.2	82.8	1.71
	-	67.8	61.6	41.6	83.0	2.15
12	+	72.6	58.0	42.1	71.4	1.79
	-	71.4	60.3	42.6	71.3	1.74
6	+	82.1	58.9	48.5	86.2	1.80
	-	76.2	60.5	45.4	84.4	1.98
0	+	78.6	60.4	47.4	74.5	1.62
	-	73.8	58.4	43.3	73.2	1.75
SEM		± 8.3	± 1.7	± 5.0	± 7.8	± 0.23

Table 4. The performance of layer chickens fed SEA and Mycosorb® binding agent (week two)

Sorghum Ergot Alkaloid (mgkg ⁻¹)	Mycosorb®	Egg Production (%)	Av. Egg Weight (g)	Egg Mass (g)	Av. Feed Intake (g/d)	FCR
24	+	82.1	57.6	47.4	86.2 ^a	1.91
	-	58.3	60.3	35.5	80.4 ^{ab}	3.06
12	+	75.0	58.5	44.4	95.1 ^a	2.86
	-	69.0	57.9	40.0	59.7 ^c	1.52
6	+	85.7	58.8	50.2	89.2 ^b	1.82
	-	69.0	59.7	41.2	83.0 ^{ab}	2.13
0	+	66.6	63.4	41.6	67.3 ^{bc}	1.69
	-	73.6	60.4	43.8	70.8 ^{bc}	1.70
SEM		± 9.1	± 1.7	± 5.6	± 5.8	± 0.48

a, b, c; means with different superscripts are significantly different (P<0.05).

Table 5. The performance of layer chicken fed SEA and Mycosorb® binding agent (week three).

Sorghum Ergot Alkaloid (mgkg ⁻¹)	Mycosorb®	Egg Production (%)	Av. Egg Weight (g)	Egg Mass (g)	Av. Feed Intake (g/d)	FCR
24	+	82.1	57.6	47.4	86.2 ^a	1.91
	-	58.3	60.3	35.5	80.4 ^{ab}	3.06
12	+	75.0	58.5	44.4	95.1 ^a	2.86
	-	69.0	57.9	40.0	59.7 ^c	1.52
6	+	85.7	58.8	50.2	89.2 ^b	1.82
	-	69.0	59.7	41.2	83.0 ^{ab}	2.13
0	+	66.6	63.4	41.6	67.3 ^{bc}	1.69
	-	73.6	60.4	43.8	70.8 ^{bc}	1.70
SEM		± 9.1	± 1.7	± 5.6	± 5.8	± 0.48

a, b, c; means with different superscripts are significantly different (P<0.05).

When Mycosorb® was added to the ergot containing diets, egg mass increased, significantly (P<0.05) in the case of basal diet 3 (6 mgkg⁻¹ SEA) (Table 5).

No signs of any pathogenic effects or wet droppings were seen for laying hens fed 6 – 24 mgkg⁻¹ sorghum ergot.

DISCUSSION

The diets used contained only sorghum as the grain component to maximize the level of sorghum ergot in the diets. This may have reduced production from what may have been achieved for a mixed grain diet. The ergot contaminated sorghum had a higher crude protein content than the non contaminated sorghum,

resulting in decreasing content of protein in the diets as one sorghum was replaced by the other. This appears to have caused a decrease in production, even though the nutrient levels were adequate by National Research Council (1994) standards. Only the diets containing the highest level of contaminated sorghum were adequate for protein recommended by the ISA company (ISA 1996).

Even though the production of laying hens fed ergot contaminated sorghum was acceptable, nevertheless their production increased when Mycosorb® was added to their diet. It therefore appears that SEA did cause effect in egg production of layers, and that Mycosorb® combated this effect.

After three weeks feeding sorghum ergot, it was found that the effect of Mycosorb® supplement appeared to be greater in the diets containing the lower ergot alkaloid concentrations. Therefore high protein concentrations appeared to prevent the severe effects of sorghum ergot alkaloid on egg production and egg mass. Thus Mycosorb® appeared to be less effective in higher protein diets than in lower protein diets.

Thus Mycosorb® seems to be an effective agent to use to combat the effects of SEA and help in promoting laying performance of chickens fed with SE contaminated sorghum. These results are similar to the findings of Devegowda and co-workers (1998) and Deo (2000) that Mycosorb™ was an effective binding agent for several mycotoxins including ergot alkaloids.

CONCLUSION

In the absence of an effective binding agent, the feeding of sorghum contaminated with ergot tends to result in changes that reduce the production efficiency of laying hens. This study has shown that increased dietary protein level and Mycosorb® binding agent effectively combat such changes. Both appear to be efficient solutions to the problem of feeding sorghum contaminated by sorghum ergot. However it is not recommended that Mycosorb® be added to diets not containing sorghum ergot.

Within any sorghum/protein level, mycosorb appears to be beneficial and at higher protein levels, mycosorbs may not be so effective.

This report deals with the response of laying hens fed sorghum ergot diets for three weeks only. In view of the production changes seen in the first three weeks it is recommended that the response of layers

fed the diets with level of nitrogen (Lysine) over a longer period be examined before more definite conclusions are drawn.

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dr. John G. Dingle, Mr. Barry J. Blaney (Principal Chemist) and Mr. John Kopinski from DPI Queensland, Dr. A. Kumar and Mr. B. Englebright for their technical assistance.

My special thanks to the Australian Grain Research and Development Corporation, and the Australian Egg Industry Association for financially supporting the research, and the University of Vudal (PNG) for providing the scholarship.

REFERENCES

ANONYMOUS (2001). Mycosorb – A nutritional alternative to clay supplements for Mycotoxin – contaminated feed. Alltech, Nicholasville, Kentucky, USA.

BLANEY, B. J., MANNION, P. F., DEO, P. and DINGLE, J. G. (1998). Implications of sorghum ergot (*Claviceps africana*) for the Queensland poultry industry. *Queensland Poultry Science Symposium 7*, 3.5 – 3.6.

DEO, P. (2000). Effects of aflatoxin and sorghum ergot (*Claviceps africana*) alkaloids on the production and immunity of poultry. Thesis (Master of Applied Science), University of Queensland, Gatton.

DEVEGOWDA, G., RAJU, M. V. M., AFZALI, N. and SWAMY, H. V. L. N. (1998). Mycotoxin Picture worldwide: novel solutions for their counteractions. In *Proceedings of Alltech's Fourteenth Annual Symposium* (T. P. Lyons and K. A. Jacques, eds.), pp. 256. Nottingham Uni Press, Loughborough Leics, UK.

ISA (1996) ISA Brown, Annex management guide, Commercial layers, ISA Lyon, France.

NRC (1994). Nutrient Requirement of Poultry (ninth revised edition). National Research Council, National Acaderny Press, Washington, D. C.

SAS (1990). SAS/STAT User's Guide, Vol. 2, SAS Institute, Cary, NC, USA.

EARLY MATURING SWEET POTATO VARIETIES FOR THE HIGHLANDS OF PNG

Bang S, Bagle G, Geob T, Kapal D and Kiara J.

ABSTRACT

Following the drought of 1997, it became clear that rural people in PNG need early maturing crops, which would produce food sooner rather than later during the post drought period. This paper reports three trials on 30 varieties of sweet potato for earliness to mature. The first two trials were conducted between 2001 and 2002, and trial three was a follow-up of the top nine selected varieties from the previous trials. The trials were conducted in Aiyura, Eastern Highlands Province. The third trial was conducted in 2003. This activity was part of the World Bank funded Drought Response Project.

The trials were laid out as Split Plot Design with three blocks. In the first two trials, there were four harvests (4th, 5th, 6th and 7th month after planting), which served as main plots and 30 varieties as subplots. Those varieties that yielded at the fourth and fifth months were analysed for earliness. Of the 10 high yielding varieties in the two trials, six were common. Based on this, nine varieties that yielded over 4 tonnes per hectare were selected for earliness and recommended to farmers.

Following that, the third trial screened these nine top performing varieties to identify the earliest yielding varieties. The harvest dates were 3rd and 4th month after planting. Seven varieties (WHCK 007, SSYK 026, PRAP 469, PRAP 417, WHCK 005, SKK 010 and WBS 010) gave acceptable yields (4 – 7 tonnes per hectare) at three months and 10 - 14 tonnes / ha at four months and can therefore be recommended as very early maturing.

Keywords: Early maturing, varieties, sweet potato, trials, split plot design.

INTRODUCTION

The PNG Department of Agriculture & Livestock and the National Agricultural Research Institute (NARI) jointly proposed a project to improve PNG's ability to cope with future El Nino related weather fluctuations. This was a consequence of the severe drought, associated with frosts, experienced in Papua New Guinea in 1997 and 1998. Crop yields were reduced by as much as 80% in some areas, resulting in severe food shortages (AUSAid Report). Towards the end of 1997, 40% of the rural population (1.2 million) was starving (Allen & Bourke 2000).

When the rain did return, people planted early maturing vegetables such as bean, leafy vegetables, corn, sweet potato and other staples. However, sweet potato takes between four and nine months to mature, depending on altitude and variety. It meant people had to wait that long. It was a crucial point in time. People suffered from diarrhoea due to lack of solid starch foods and there were reports of deaths. The objective of these three trials were to select early

maturing varieties of sweet potato to recommend for cultivation during the post drought period so that farmers can secure their invaluable energy food as soon as possible after an event of drought, frost or other natural disasters.

MATERIALS AND METHODS

There were three trials conducted. The two earlier trials were laid out using the Split Plot Design with three blocks. Four harvest dates served as main plots and the varieties (30) as sub plots. The blocks were 75 m x 48 m each while each main plot measured 75 m x 12 m. The plant spacing was 0.5 m within rows and 1.0 m between rows. The gross plot measured 6 m x 4.5 m and a net plot of 4 m x 4.5 m. There were 36 plants in the net plot. The outer 1 m x 4.5 m on each side served as guard.

In the third trial, the same trial design was applied with four replicates. The two harvest dates (three [3] and four [4] months after planting) served as the main

plots and the nine varieties as subplots. Plots consisted of six single row ridges four metres long and spaced at one metre apart. The actual size of the plot harvested was 4 m x 3 m with 24 plants. Plant spacing was same for all trials.

The first trial was planted in March 2001, second in January 2002 and third in April 2003 in Aiyura, EHP at 1,680 metres above sea level. In the first two trials, the four main treatments were harvesting times; very early maturing at four months after planting, early maturing at five months, maturing at six months and late maturity at seven months. The harvesting dates formed main blocks, with the varieties as sub plots. The same 30 varieties were used in both trials. In the third trial, there were two main treatments as harvesting times, very earliest maturing (3 months) and very early maturing (4 months). The first harvest was carried out on July 28th, 2003, after three months, and the second harvest on August 28th, 2003.

The data collected were the same for all three trials; immature tuber number per plant, immature tuber weight per plant, mature tuber weight per plant, marketable tuber number per plant, marketable tuber weight per plant, non-marketable tuber number per plant, non-marketable tuber yield per plant, total yield per plot and vigor assessment.

The two earlier trials assessed 18 varieties, which farmers had selected as being drought tolerant (Humphrey, *et al.* 2002) and 12 high yielding varieties from the Pacific Regional Agricultural Project (PRAP) selection (Guaf *et al.* 1998). Listed below are the varieties evaluated: Farmer SSYK 023, Farmer SGG 008, Farmer SSYK 018, Farmer WHCK 005, Farmer SGG 001, Farmer SGG 006, Farmer SSYK 019, Farmer WJW 001, Farmer EDK 003, Farmer SKK 010, Farmer WBS 010, Farmer WMK 008, Farmer WJW 002, Farmer SSYK 002, Farmer WHCK 007, Farmer WJW 003, Farmer SSYK 026, Farmer SKK 009, PRAP 469, PRAP 91, PRAP 559, PRAP 714, PRAP 1443, PRAP 123, PRAP 107, PRAP 2, PRAP 219, PRAP SUGAR, PRAP 1170 and PRAP GOIFE.

The third trial assessed nine top performing varieties identified from the two earlier trials; they were WHCK 007, WHCK 005, WBS 010, SKK 010, PRAP 123, PRAP 714, PRAP 469, PRAP 559 and SSYK 026.

The trials were manually weeded using spades during the growing period. No fertilisers or chemicals was applied in all the trials.

RESULTS

The results of the first two trials are presented in Tables 1, 2 and 3 below and results of trial 3 are presented on Table 4 under the combined results.

First Sweet Potato Early Maturing Variety Trial Planted in Aiyura

Yield at four months was low for all varieties, though nine varieties yielded 4 tonnes per hectare or more (Table 1). At five months, seven varieties yielded 8 t/ha or more.

Second Sweet Potato Early Maturing Variety Trial Planted in Aiyura

At four months, 12 varieties yielded over 4 tonnes per hectare (Table 2). Eight of these varieties also yielded over 4 tonnes at four months in the first Trial. At five months, 14 varieties yielded more than 10 t/ha. Eleven varieties had mean yields of 8 t/ha or more (Table 2).

COMBINED TRIAL RESULTS

Based on harvest at four months of Trials 1 and 2, nine varieties were selected as early maturing. They yielded between 4 and 8 tonnes per hectare (Table 3).

Trial 3 assessed nine selected varieties from the two earlier trials, to identify earliest varieties that can mature as early as three to four months after planting with acceptable yield.

The fourth column in table 4 gives an indication of possible yields if farmers chose to harvest their crop between three and four months. Overall, the available data shows seven superior varieties.

DISCUSSION

The objective of these trials is to select early maturing varieties of sweet potato to recommend for cultivation during the post drought period; so that farmers can secure this important energy food sooner rather than later.

Yield at four months was low for all varieties in trial 1, though nine varieties yielded 4 tonnes per hectare or more and could be considered as early maturing. At five months, seven varieties yielded 8 t/ha or more

(Table 1). Four of these were among the nine, which yielded best at the first harvest. If mean yields from the first two harvests are considered, six varieties yielded over 6 t/ha.

For the purpose of selecting for early maturity, total yield of varieties when harvested at four and five months is important (Table 1). Yields were low in two of the three blocks in Trial 1 due to waterlogged conditions and death of some plants. Therefore there were significant differences between varieties in the

number of plants harvested. The high CV reflects this. Despite that, one variety (714) produced the highest yield at five months.

Similarly in trial 2, selection for early maturity was done for harvests at the fourth and fifth months and analysed separately (Table 2).

If the top 10 varieties in Trial 1 and Trial 2 are compared, six varieties are common to both lists, suggesting that they consistently produce good

Table 1. Total Yield (t/ha) of 30 Varieties of Sweet Potato after harvesting at 4 and 5 Months in Trial One

Variety	4 Months	5 Months	Mean
PRAP 714	4.20	20.36	12.28
PRAP 123	6.84	13.70	10.27
WHCK 007	4.18	14.26	9.22
PRAP 91	3.68	12.96	8.32
PRAP 469	8.34	7.96	8.15
WBS 010	6.39	8.41	7.40
GOIFE	0.51	10.58	5.55
SSYK 022	3.20	7.68	5.44
WHCK 005	2.07	8.19	5.13
PRAP 559	6.19	4.02	5.11
PRAP 1170	5.09	4.90	5.00
SKK 009	3.93	5.57	4.75
SSYK 026	5.05	3.40	4.22
SKK 010	4.95	3.37	4.16
SGG 008	2.70	5.52	4.11
WJW 003	2.09	5.81	3.95
WJW 002	3.48	4.36	3.92
PRAP 219	3.52	3.78	3.65
WMK 008	2.86	4.35	3.61
EDK 010	1.21	5.71	3.46
SSYK 019	0.80	5.09	2.95
PRAP 2	1.42	4.21	2.81
WJW 001	0.85	4.17	2.51
SGG 006	1.51	3.46	2.49
SSYK 018	2.64	2.28	2.46
PRAP SUGAR	1.60	2.64	2.12
PRAP 1443	1.62	2.38	2.00
SSYK 023	0.47	2.26	1.36
PRAP 107	0.69	1.29	0.99
SGG 001	0.13	0.49	0.31
Mean	3.07	6.11	
LSD (P<0.05)	7.7	8	
CV (%)	17.2	80	

Table 2. Total Yield (t/ha) of 30 sweet potato varieties after harvesting at 4 and 5 Months in Trial 2.

Variety	4 Months	5 Months	Average
WHCK 005	8.59	16.04	12.32
WBS 010	6.99	16.93	11.96
PRAP 714	5.51	18.03	11.77
WHCK 007	7.34	14.92	11.13
SSYK 026	7.79	13.74	10.77
PRAP 469	5.62	15.68	10.65
SKK 010	6.44	13.71	10.08
SGG 006	4.08	14.06	9.07
PRAP 219	3.15	14.74	8.95
PRAP 559	4.82	12.65	8.74
PRAP 123	4.61	11.56	8.09
SKK 009	3.41	12.10	7.76
WJW 003	3.19	12.16	7.68
SSYK 019	4.23	9.92	7.08
PRAP 2	4.33	9.27	6.80
Goife	1.92	11.60	6.76
PRAP 1170	3.89	9.27	6.58
WJW 002	1.60	10.01	5.81
PRAP 91	3.22	8.36	5.79
EDK 010 (003)	2.99	7.54	5.27
SSYK 022	2.70	8.57	5.64
WMK 008	3.66	6.85	5.26
PRAP 1443	2.50	6.36	4.43
WJW 001	1.76	6.56	4.16
SSYK 023	2.48	5.75	4.12
PRAP 107	2.55	4.95	3.75
SSYK 018	2.47	4.68	3.58
PRAP Sugar	2.00	3.93	2.97
SGG 008	0.48	4.10	2.29
SGG 001	0.30	3.89	2.10
Mean	3.82	11.04	
LSD (P<0.05)	2.51	NS	
CV (%)	40	80	

yields when harvested early. These six are included in Table 3, which consists of high yielding and early maturing varieties at four months after planting.

Based on the results, all nine varieties on Table 3 and 4 are recommended as giving reasonable yield (more than 4 tonnes per hectare) at four months. Given that yield in traditional PNG gardens is between 5-20 tonnes per hectare (Bourke 1985), the yields of these varieties at 4 months are acceptable.

It should be noted that five of the nine varieties are also tolerant to drought conditions. It means farmers can add these varieties to their collection to be grown for long- term drought preparedness and for enhancing post drought recovery.

Further more, the results of Trial 3 confirmed earlier selections for early maturing sweet potato varieties and drought tolerance (Bang *et al.* 2002). The varieties found to be high yielding continue to out-

Table 3. Total yield (t/ha) of common Early Maturing Sweet Potato Varieties at 4 months from Trials 1 and 2.

Variety	Trial 1	Trial 2	Mean	Remarks
PRAP 469	8.34	5.62	6.98	Also drought tolerant
WBS 010	6.39	6.99	6.69	Also drought tolerant
SSYK 026	5.05	7.79	6.42	Popular in Simbu
WHCK 007	4.18	7.34	5.77	Very early Maturing
PRAP 123	6.84	4.61	5.73	
SKK 010	4.95	6.44	5.70	Also drought tolerant
PRAP 559	6.19	4.82	5.51	
PRAP 714	4.20	5.51	4.86	Also drought tolerant.
WHCK 005	2.07	8.59	5.33	Also drought tolerant

Table 4. Total Weight of Edible Sweet Potato Tubers in tonnes per hectare (t/ha) and yield ratios at 3 and 4 months harvests from date of planting in trial 3.

Sweet Potato Variety	Three Months	Yields (t/ha)		Average Yields
		Four Months	Ratios 3:4	
PRAP 559	2.83 a	7.96 a	0.36 abc	5.39 a
PRAP 123	2.85 a	8.96 a	0.33 ab	5.90 ab
PRAP 714	3.87 a	10.83 a	0.35 abc	7.35 abc
WHCK 007	3.96 a	13.80 a	0.28 a	8.88 bcd
SSYK 026	4.04 a	10.45 a	0.40 abcd	7.24 abc
PRAP 469	4.33 ab	13.92 a	0.32 ab	9.13 cd
WHCK 005	6.41 bc	13.56 a	0.46 bcd	9.99 cd
SKK 010	6.75 c	13.79 a	0.51 cd	10.27 cd
WBS 010	7.46 c	14.01 a	0.57 d	10.74 d
LSD (5%)	2.08	Ns		3.15
C.V. (%)	30.2	28.2	29.6	26.0

perform the others. Five varieties (WBS 010, SKK 010, WHCK 005, PRAP 469 and WHCK 007) produced tubers in excess of 13 tonnes/ha during the fourth month harvest. The highest yielding variety WBS 010 was particularly recommended for its ability to tolerate drought and early maturing characteristics.

It can be recommended for farmers to not only cultivate the top seven selected early maturing sweet potato varieties (WHCK 007, SSYK 026, PRAP 469, PRAP 417, WHCK 005, SKK 010 and WBS 010) post drought, but add these permanently into their gardening system as a strategy for long-term preparedness. All three trials at Aiyura have shown that acceptable yields can be obtained at three and four months, though tubers will continue to bulk up

after this. They will be able to provide edible and good tuber sizes sooner than most varieties.

REFERENCE

ALLEN, B.J. and BOURKE, R. M. (1997). "Report of an Assessment of the Impacts of frost and Drought in Papua New Guinea"; Port Moresby, Australian Agency for International Development.

BANG, S., DEMERUA, J and GEOB T. (2002). Screening of sweet potato cultivars for drought tolerance for the Highland Agricultural Systems for PNG, Trial 2, Drought Response Project, Aiyura, PNG.

BANG, S, GEOB T and KAPAL D, (2002),
Screening of sweet potato cultivars for drought
tolerance for the Highland Agricultural Systems for
PNG, Trial 3, Drought Response Project, Aiyura,
PNG.

BOURKE, M. (1985), Sweet potato (*Ipomoea*
batatas) Production and Research in Papua New
Guinea. *Papua New Guinea Journal of Agriculture,*
Forestry and Fisheries, Volume 33(3-4), 89-108.

GUAF, E., LUTULELE, R and VAN WIJMEERSCH,
P. (1998). Updated remarks on the Physical
Characteristics of promising sweet potato varieties
evaluated under highlands conditions in Papua
New Guinea as of November 1997, Unpublished
Draft report, Pacific Regional Agricultural Program,
National Agricultural Research Institute,
Department of Agriculture and Livestock, Papua
New Guinea.

HUMPHREY, B., ERNEST, J. and DEMERUA, J.
(2001). The World Bank El Nino Drought and Frost
Impact Management Project. In Bourke, R.M.,
Allen, M.G. and Salisbury, J.D., ed.2001. Food
Security for Papua New Guinea. Proceedings of
the Papua New Guinea Food and Nutrition 2000
Conference, PNG University of University, Lae, 26-
30 June 2000. *ACIAR Proceedings No. 99, pp 271-274.*

JAVANESE ZEBU CATTLE OF PAPUA NEW GUINEA EXTINCTION BY NEGLECT

Alan R. Quartermain

ABSTRACT

Cattle of South-east Asian origin were introduced and became widespread in New Guinea during German colonial times. The predominant type was a small, distinctive zebu-type animal which became known as the Javanese Zebu. These cattle were used for vegetation control under coconuts as well as for beef. The herds were decimated and dispersed during the Japanese occupation but a number were re-established post-war and, in the mid 1970s, government officers accumulated such cattle to establish breeding herds at Erap in Morobe and Urimo in East Sepik. A limited amount of comparative production data were obtained before these herds too were dispersed in the 1980s. There are now no known purebreeding herds in existence but there may be a number of these cattle still owned by smallholders in the Sepik Plains area. The FAO - UN lists the breed as endangered and, short of a major salvage operation, it may well be regarded as extinct. The available data and publications all come from the work of Dr John Holmes and his colleagues, but there are only three research papers. Compared to typical lowland Brahman crossbred commercial cattle, Javanese cattle are smaller and grow more slowly when on good pasture. They are more fertile but the margin is small under good conditions. However, the Javanese cattle are clearly superior in all aspects of productivity in the harsh environment of the Sepik Plains. If indeed the breed has been lost due to over 20 years of neglect by government agencies and the cattle industry, it will be difficult to replace for beef production in the harsh, humid, poor fertility lowland grasslands. The conservation of domestic animal biodiversity at the sub-species level is crucial as production industries face uncertain futures.

Keywords: Cattle, Javanese Zebu, Brahman crossbreed, Dressing percentage, grasslands.

INTRODUCTION

Cattle of Southeast Asian origin were variously introduced into the then New Guinea colony by the German Administration, planters and missionaries from the 1880s up until the change in administration as a result of the First World War (Holmes 1977, Holmes *et al.* 1977). Cattle of a variety of types and origins became widespread throughout the colony or protectorate where coconut plantations were established. While there are various references to the introductions in records such as those of the New Guinea Kompagnie, it was rarely clear what kinds of animals came from where, most having been loaded on route. Indications are that most came from the Dutch colony of Batavia or Java but cattle were also introduced from Thailand. A distinct type of zebu cattle became widespread and known as the Javanese Zebu. These cattle were ideally suited to the control of grass growth under coconuts.

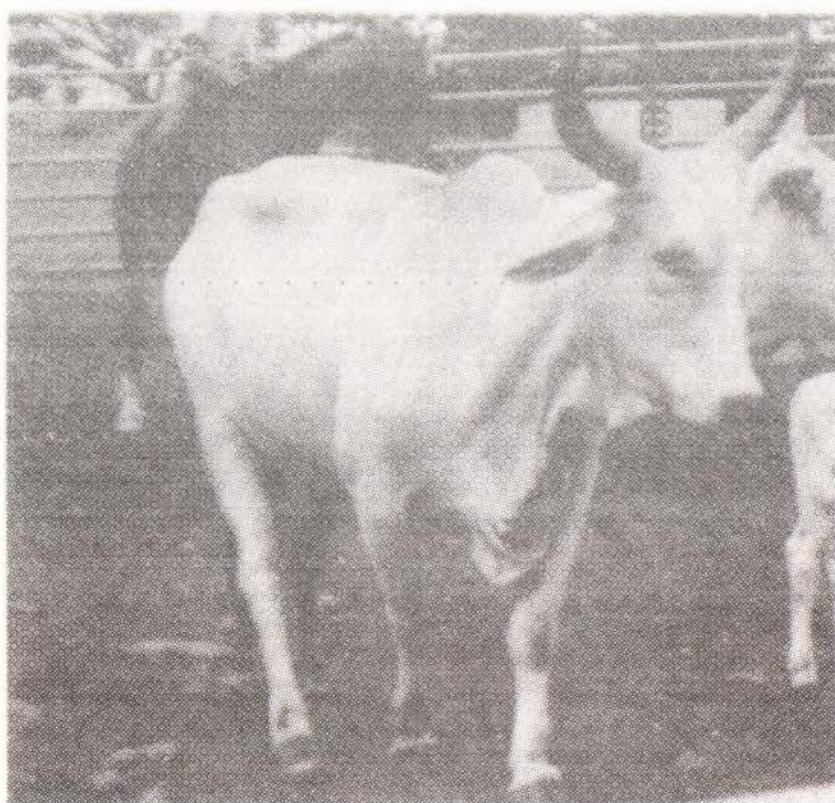
The regions of the New Guinea north coast mainland and islands where most plantations were

concentrated were also the areas occupied by the Japanese army during the Second World War. As a result of slaughter for food supply and intense fighting, the cattle herds were decimated and many cattle became feral. Post-war, a number of plantations and Catholic missions, particularly in the Sepik, Madang and New Ireland Provinces of what is now Papua New Guinea (PNG), re-developed herds of Javanese cattle. It is believed that few if any of these herds retain these animals in pure-breed form today.

These Javanese Zebu (JZ) cattle of PNG have featured in publicity releases by FAO as an example of a threatened domestic animal resource. The FAO World Watch List for Domestic Animal Diversity (Scherf 2000) lists the breed type as endangered with a decreasing population trend. They state that the total number of breeding females may be as low as 400 and there are no banked germplasm materials. Endangered is defined for breeds as having between 100 and 1000 breeding females or 5-20 breeding males.

University of Vudal

No survey of the status of this breed has been carried out since 1979. The two government herds with these cattle were dispersed and many of the existing cattle are presumed feral. Anecdotal evidence suggests that there may be a reasonable number of animals of the type with smallholders in the Sepik Plains area and Holmes (1980) estimated that there might be 2000 animals total. Another major salvage operation as was undertaken in the mid 1970s to establish the government herds would probably be necessary to save the breed from extinction, if not already too late. It is thought worthwhile to aggregate and summarise the limited amount of data in the small number of publications concerning these cattle for ease of reference. A systematic description of the breed is given by Holmes (1980) and the only available photograph is given in Figure 1 from Holmes (1981b).


THE TWO GOVERNMENT HERDS

From 1974, officers of the PNG government Department of Agriculture, Stock and Fisheries (now Department of Agriculture and Livestock) accumulated JZ cattle to establish herds on

the government ranches of Erap and Urimo. Holmes *et al.* (1992) state that the department purchased one bull and 24 females of a range of ages from Catholic missions in the Lower Sepik, 33 heifers and four bulls from coconut plantations near Madang, and 25 heifers and two bulls from plantations in New Ireland. The available data were only begun to be collected after the formation of these government herds and there are only seven publications altogether, all authored or co-authored by Dr Holmes. Of these, only three papers contain experimental results with estimates of precision attached to production statistics. All data come from purebred or crossbred cattle on the two stations.

The former Beef Cattle Research Station at Erap in the Markham Valley of Morobe Province is situated at 100 m above sea level, has an average annual rainfall of 1250 mm and has a temperature range of 18o-35o C with little annual variation. The recently deposited alluvial silt and sandy loam soils support pastures of *Di-chanthium annulatum*, *Imperata cylindrica* and *Cenchrus ciliaris*. The former Sepik Plains Livestock Station, now mainly reverted to traditional land ownership, has a considerably harsher environment. While the climate is similar to

Figure 1. Javanese Zebu Cow.

that of Erap, except for a higher annual rainfall averaging 1700 mm, the podsolic soils have multiple mineral deficiencies for cattle production, the major limitation being phosphorus as shown clearly by Holmes (1981a). The vegetation of these rolling grass plains is an association of *Imperata cylindrica*, *Themeda australis*, *Lochaemum barbatum* and sedges.

DESCRIPTION AND PRODUCTION DATA

According to Holmes (1980), the animals come in a variety of coat colours, the commonest being fawn with a black stripe along the spine. The coat is short, ears small (15 cm) and held horizontal, hump overhanging or pyramidal, horns variable in colour and direction but not twisted, and the udder small, neat and closely attached. Bulls weigh 500-580 kg while cows weigh 320-410 kg. The cattle are quiet but alert in the field. In yards they can become very excitable and nervous. They are good mothers and are very aggressive when the calves are young. They are the most resistant of all the PNG cattle to ticks which have a limited distribution in PNG and screw worm.

The most comprehensive set of comparative reproduction and calf growth data comes from assessment with continuous mating over five years of Brahman crossbred (BX) and JZ cattle and their reciprocal crosses at Erap (Holmes *et al.* 1992). The BX cows were typical lowland commercial cattle and

there were 20 heifers (later reduced to 14 cows) in each mating group. Three bulls of each breed were used sequentially.

Tables 1 and 2 are reproduced directly from the Holmes *et al.* (1992) paper and give the relevant data on cow weights and calving intervals by cow breed and on calf weights and pre-weaning growth rates by breed of dam and sire. Initial heifer mating time was determined by weight rather than age, based on earlier experience, and hence the JZ heifers were mated some 134 days earlier and 100 kg lighter than the BX heifers. Nevertheless, JZ cow weights never approached those of the BX and JZ cows were 62-73 percent of the weight of the BX. Calving intervals for the JZ were 19 days shorter.

Purebred BX calves were 10 kg heavier at birth than JZ calves and grew 48 percent faster to weaning at 7.5 months. Pre-weaning average daily gains were 0.68 kg and 0.46 kg respectively. The effect of the breed of sire in the reciprocal crosses was quite small.

Holmes (1981b) reported average calving intervals and pre-weaning growth rates for both types of cattle at Erap and at Urimo. Intervals were 14 months for BX cows at Erap, 22 for BX at Urimo, 12 for JZ at Erap and 13 months for JZ at Urimo. These intervals are probably closer to what might be expected in a smallholder herd than the least-square means in Table 1. Corresponding pre-weaning growth rates were 0.72 and 0.35 kg per day for BX at the two

Table 1. Least squares breed and parity means of weights and intervals during calving cycles in BX and JZ cows and calf pre-weaning weights

Trait	Breed	Parity				
		1	2	3	4	5
Cow Traits						
Weight (kg) at:						
Conception	BX	333	368	404	448	428
	JZ	217	262	276	279	292
Pre-calving	BX	424	455	471	487	486
	JZ	293	306	309	333	322
Minimum during lactation	BX	363	392	396	406	375
	JZ	241	270	274	284	253
Weaning of calf	BX	380	413	424	431	397
	JZ	277	294	273	312	278
Calving Interval (days)	BX	1078 *	389	357	365	370
	JZ	944 *	370	338	346	351
Calf Traits						
Birth Weight (kg)		31.3	31.9	31.3	28.4	27.4
Birth weight/Cow pre-calving weight (%)		8.7	9.0	8.8	8.0	6.6
Average Daily Gain (kg/day)		0.58	0.64	0.60	0.52	0.50
Weaning weight/Cow weight at weaning (%)		50	52	49	40	45

* Time between birth of cow and birth of first calf

Table 2. Least squares means for birth weight, birth weight as a proportion of cow pre-calving weight, average daily gain to weaning and adjusted weaning weight as a proportion of dam weight at weaning for BX - BX, JZ - JZ, BX - JZ and JZ - BX

Trait	Mean (SE)	Breed of Dam	Breed of Sire		
			BX	JZ	Both
Birth Weight (kg)	30.1	BX	35.1	30.8	33.0
	(0.7)	JZ	29.3	25.0	27.2
		Both	32.2	27.9	
Calf birth wt/Cow pre-calving wt (%)	8.0	BX	7.8	6.7	7.3
	(0.3)	JZ	9.3	8.3	8.8
		Both	8.6	7.5	
Pre-weaning Average Daily Gain (kg)	0.57	BX	0.68	0.61	0.65
	(0.01)	JZ	0.53	0.46	0.50
		Both	0.61	0.54	
Calf weaning wt/Cow wt at weaning (%)	47	BX	47	43	45
	(1.0)	JZ	52	47	50
		Both	50	45	

sites and 0.50 and 0.52 kg for JZ. Weaner production per cow in kg per year were 162 and 61 for BX at the two sites and 122 for JZ at both sites. BX cows at Urimo lose 30 percent of their body weight during lactation (Holmes 1977) compared to five percent and 11 percent for JZ and BX heifers at Erap. The environmental effect of the conditions at Urimo on performance of the BX cows is clear.

Two reports on feeding experiments give data on the post-weaning growth of steers and on carcass characteristics. Holmes (1979) grazed steers of the two breeds at Erap on three feeds with three steers per group. The feeds were Nunbank buffel grass pasture and two cultivars of the tree legume *Leucaena*. The experiment ran for one year. Initial weights of the 14-17 month BX steers averaged 215 kg while the 12-18 month JZ steers averaged 177 kg. Since there were no differences in steer growth between the feeds, the data in Table 3 are given as breed means.

BX steers grew significantly faster than JZ steers with a greater total weight gain. However, the breeds had similar dressing percentages since the JZ steers had smaller but fatter carcasses.

In the second experiment, Gwaiseuk and Holmes (1985) fed steers for 18 weeks on treatments to evaluate the use of wheat millrun as a supplement to grazing of buffel grass pasture. Breed differences were not analysed as such and only data relevant to the breed comparison are given here. There were two 20-24 month JZ steers and two 16-24 month BX steers on each treatment. Relevant data from the grazing and four hours of millrun feeding as a supplement to grazing treatments are given in Table 4. JZ steers did not respond at all well to higher levels of millrun supplementation. The only significant breed difference was that for average daily gain on full grazing when the BX out performed the JZ steers.

Table 3. Growth and carcass characteristics of JZ and BX steers at Erap

Breed	Javanese Zebu	Brahman Cross
Average daily gain	0.3 kg	0.4 kg
Total liveweight gain	105 kg	143 kg
Final weight	282 kg	358 kg
Carcass weight	170 kg	212 kg
Dressing percentage	60.3 %	59.2 %
Backfat thickness	6.4 mm	3.8 mm

Table 4. Growth and carcass characteristics of JZ and BX steers on grazing and limited millrun supplementation

Treatment	Grazing only	Millrun 4 hours	Grazing only	Millrun 4 hours
Breed	JZ	JZ	BX	BX
Growth rate per day	0.61 kg	0.97 kg	0.83 kg	1.07 kg
Final liveweight	345 kg	386 kg	358 kg	391 kg
Carcass weight	192 kg	215 kg	194 kg	215 kg
Dressing percentage	55.6 %	57.4 %	54.2 %	54.9 %
Backfat thickness	6 mm	9 mm	4 mm	8 mm

CONCLUSIONS

In summary it seems appropriate to quote the conclusion and recommendation of Holmes *et al.* (1992). They "conclude that crossbreeding BX and JZ to produce F1 cattle is unlikely to be advantageous in PNG unless greater advantages are shown than found here. The BX cattle at Erap have high fertility and good growth rates. JZ cattle are smaller and more fertile than BX, but this advantage is smaller under good conditions and their energetic efficiency is unlikely to be significantly greater. Under harsh, humid equatorial lowlands conditions JZ are superior and their contribution to beef production in Papua New Guinea probably lies in these areas."

If indeed the breed has been lost due to over 20 years of neglect by government agencies and the cattle industry, it will be difficult to replace for beef production in the harsh, humid, poor soil fertility, lowland grasslands. The conservation of domestic animal biodiversity at the sub-species level is becoming of increasing concern worldwide and is crucial if production industries are to have the flexibility to adapt to uncertain futures. If it is not already too late to act, the JZ cattle of PNG should not be allowed to vanish through neglect or ignorance of their actual or potential contribution to beef production from the nation's grasslands.

REFERENCES

GWAISEUK, W.R.J. and HOLMES, J.H.G. 1985. Intake, Digestibility and Growth of Tropical Breeds of Cattle Consuming Tropical Grasses Supplemented with Mill Run. *Papua New Guinea Journal of Agriculture, Forestry and Fisheries* 33: 115-121.

HOLMES, J.H.G. 1977. South East Asian Cattle in Papua New Guinea. *Third International Congress of the Society for the Advancement of Breeding Researches in Asia and Oceania*. Canberra, February 1977, Part 1 (c), pp 50-55.

HOLMES, J.H.G. 1979. Toxicity of *Leucaena leucocephala*. 1. Equal Toxic Effects of Two *Leucaena* Strains on Two Breeds of Tropical Cattle. *Papua New Guinea Agricultural Journal* 30: 65-69.

HOLMES, J.H.G. 1980. Animal Genetic Resources in Papua New Guinea. In: *Proceedings of the SABRAO Workshop on Animal Genetic Resources in Asia and Oceania*. Ministry of Agriculture, Tsukuba, Japan. pp 439-468.

HOLMES, J.H.G. 1981a. Phosphate Deficiency in Cattle on the Sepik Plains, Papua New Guinea. *Tropical Animal Health and Production* 13: 169-176.

HOLMES, J.H.G. 1981b. Beef Cattle Breeds for Papua New Guinea. *Harvest* 7: 99-102.

HOLMES, J.H.G., MCKINNON, M.J., SEIFERT, G.W., SCHOTTLER, J.H., BANNICK, A. and MALIK, R. 1992. Reproduction and Calf Growth in Brahman Crossbred and South East Asian Cattle in Papua New Guinea. *Asian-Australasian Journal of Animal Sciences* 5: 427-433.

HOLMES, J.H.G., SCHOTTLER, J.H. and LECHE, T.F. 1977. South East Asian Cattle, Buffalo and Sheep in Papua New Guinea. In: Enyl, B.A.C. and Varghese, T. (eds) *Agriculture in the Tropics*. University of Papua New Guinea, Port Moresby, Papua New Guinea. pp 361-370.

SCHERF, B.D. (ed) 2000. *World Watch List for Domestic Animal Diversity*. Third Edition. Food and Agriculture Organisation of the United Nations, Rome, Italy.

DRY MATTER PRODUCTION OF FIVE VALANGUR (POLYSCIAS SP.) VARIETIES

Joachim A.R. Pitala

ABSTRACT

Five Valangur varieties namely *Tuna*, *Kiau*, *Ene*, *Molo* and *Ravalian* were collected and established at the University of Vudal farm in the East New Britain Province.

As part of a series of studies planned for the Valangur Varieties Collection Project, a dry matter production study was conducted from March to June 2008 to find out which of the five varieties produces consistent higher dry matter yields (DMY).

The study shows that the Valangur variety *Ene* gave higher dry matter yields throughout the 4 months period. This result is consistent with the physical leaf characteristics of this particular variety. The DMY for the other four varieties (*Tuna*, *Kiau*, *Molo* and *Ravalian*) were similar and not significantly different.

Keywords: Five Valangur varieties, studies, Collection Project, matter yields, leaf, characteristics.

INTRODUCTION

Papua New Guinea (PNG) is blessed with extensive renewable and non-renewable natural resources, a generally favorable climate, and a relatively small population of about 5.4 million. The forests in particular have provided Papua New Guineans with building and clothing materials, spiritual purposes and food resources since time immemorial. There is a plethora of diverse plant species which are used for medicinal purposes and as green vegetables that continue to play a major role in the nutrition and health, and livelihood of many communities.

In spite of this floral diversity, there is unfortunately scant information about their biological characteristics, nutritional and other uses as well as information on their negative aspects. This lack of information and documentation has led to a situation where some of these plant species especially the green leafy vegetables have been "neglected" and sadly to say have been given less priority in terms of research and their cultivation compared to many introduced vegetable plant species.

One of these plant species which continue to contribute to the nutrition and well-being of the people of East New Britain Province is a shrub called "Valangur" in the Kuanua language of the Tolai people of East New Britain Province (ENBP). Valangur (*Polyscias* spp.) is used extensively in the

Gazelle Peninsula as a live fence, as an erosion control plant and as a vegetable crop. A survey conducted by Lolo (1982), indicated that Valangur (*Polyscias verticillata*) is one of the most frequently consumed green vegetables among the Tolai people of ENBP.

Conn (1995), indicated that there are about 100 species of *Polyscias* throughout the tropics including the Pacific Islands and 20 of them are found in Papua region. Moreover, 9 of the species are considered endemic and only 3 of them are known to be in cultivation. In PNG, Conn (1995) documented the characteristics of 19 *Polyscias* species. However, there is very little information available on the nutritional and other social beneficial attributes of these species.

This report highlights the dry matter production of five Valangur varieties as part of a series of studies planned for the Valangur Varieties Collection Project (Project No: 10107) established at the University of Vudal (UOV) in East New Britain Province.

MATERIALS AND METHODS

Location

The Valangur Varieties Collection Project was established at the UOV's agriculture farm located

within the university campus. The university is situated approximately 45 km away from Rabaul town in ENBP. The geographical coordinates are 155° east and 10° south of the equator. The annual rainfall is about 3000 mm and the mean monthly minimum and maximum temperatures range from 22-25°C and 30-33°C, respectively.

Varieties and spacing

Five Valangur varieties were used and are known locally as Valangur Tuna, Valangur Kiau, Valangur Ene, Valangur Molo and Valangur Ravalian. The total area used for the project was 529 m² and the spacing within and between rows, within a variety, were 200 cm and 150 cm, respectively. The spacing between varieties was 200 cm. Therefore, there were 3 rows per variety.

Stem cuttings (with variable lengths and sizes) were used as planting materials and the number of cuttings per variety was 33 which required a total of 165 cuttings.

Leaf sampling procedure for dry matter determination

The first leaf sampling for DMY was conducted in March 2008 and continued at monthly intervals for 4 months. Leaf samples were collected from 5 random selected plants from each variety and this was done by harvesting the 3rd and 4th imparipinnate leaves

from the top. Subsequent leaf samplings were done on the same plants within the 4 months period. Immediately, after the leaves were harvested, their fresh weights (FW) were taken and then dried in an oven at 80°C for 24 hours and after cooling, their dry weights were taken.

RESULTS AND DISCUSSION

The dry matter yield data indicate that there were significant ($P<0.05$) differences in dry matter yields between varieties Ene and Tuna, between Ene and Kiau, between Ene and Molo, and between Ene and Ravalian (Figure 1). No significant ($P<0.05$) differences in dry matter yields were observed among varieties Tuna, Kiau, Molo and Ravalian.

It is apparent from the results that in terms of dry matter production, variety Ene consistently produced higher dry matter yields compared to the other four varieties. This result is consistent with the physical characteristics of this variety particularly in relation to its leaf characteristics. For example, the number of leaflets and petiole lengths of variety Ene are 13 and 52.5 cm, respectively. Also, the width range of leaflets and the average length of leaflets of variety Ene are slightly higher compared to the other four varieties (Table 1 and Plate 3) which have less number of leaflets and shorter petiole lengths (Table 3 and Plates 1, 2, 4 and 5). However, it is quite evident that the higher number of leaflets, the longer

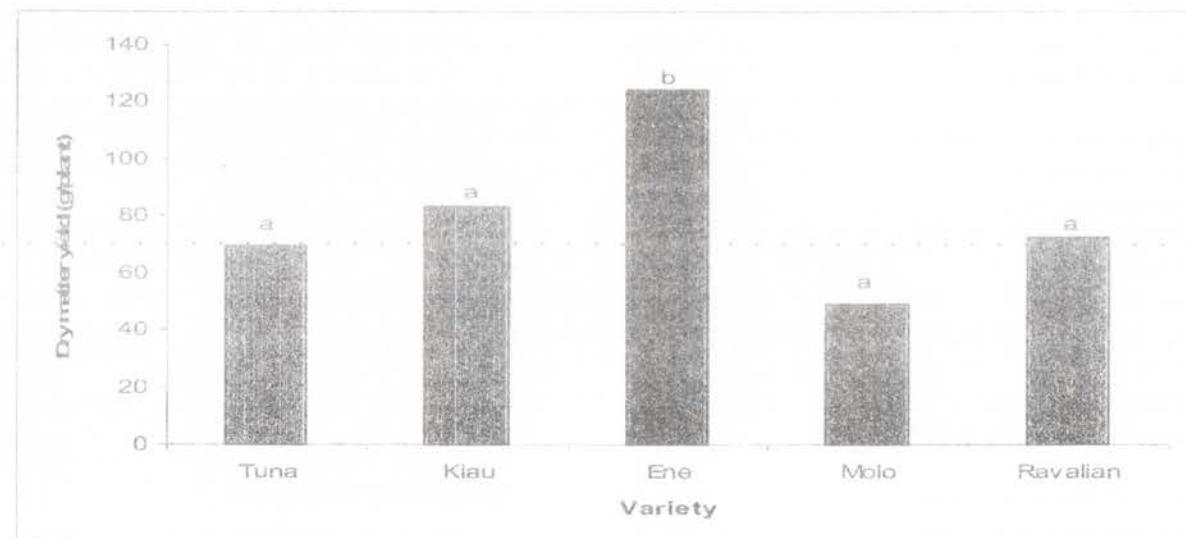


Figure 1. Dry matter yields of the five varieties of Valangur. Columns headed by the same letter do not differ significantly at the 5% level by DMRT.

Table 1. Some leaf characteristics of the different Valangur varieties

Characteristic	Variety				
	Tuna	Kiau	Ene	Molo	Ravalian
Number of leaflets	11	9	13	11	11
Average length of leaflets (cm)	15 cm (range: 11-16.5 cm)	17.8 cm (range: 12.9-19.4 cm)	23.3 cm (range: 17-26.5 cm)	22.3 cm (range: 17-27 cm)	17.4 cm (range: 14-21 cm)
Width range of leaflets (cm)	7-10 cm	7-9.5 cm	7.5-12 cm	7.5-10 cm	6.5-10 cm
Petiole length (cm)	36 cm	33.5 cm	52.5 cm	46 cm	38.5 cm
Color	Yellowish at top & green at lower leaves	Yellowish top leaves and green at lower leaves	Glossy dark green	Glossy dark green	Dark green

Plate 1. Valangur Tuna

Plate 2. Valangur Kiau

Plate 3. Valangur Ene

Plate 4. Valangur Molo

Plate 5. Valangur Ravalian

leaflets and the petiole length appear to be the major contributing factors to the higher dry matter yields observed in variety Valangur Ene.

ACKNOWLEDGEMENT

I am most grateful to the University of Vudal for funding this project. The Farm Operations Manager for allocating the land area for the project. Dr. Alan Quartermain, for his support and comments on the draft of this paper. Mrs. Meriba and her family maintained the plot during the experimental period and provided the local names of the Valangur varieties.

REFERENCE

CONN, B.J. (1995). *Handbook of the flora of Papua New Guinea*, III. Melbourne University Press, Carlton, Victoria 3053; Australia.

LOLO, M. (1982). A survey of traditional vegetables in the Gazelle Peninsula, East New Britain. *Proceedings of the second Papua New Guinea food crops conference – Part One*, Goroka, Papua New Guinea, July 13-17. pp 148-158. Department of Primary Industry, Port Moresby.

**PAPUA NEW GUINEA JOURNAL OF AGRICULTURE, FORESTRY AND
FISHERIES (PNG *j.agric.for.fish.*)**

INDEX

VOLUMES 31-41

1980-1998

By

Janine Conway

With assistance from Betty Aiga and Jones Hiaso

**ACNARS PROJECT
AusAID**

1999

This project was done under Australian Contribution to a National Agricultural Research System (AusAid) and National Agricultural Research Institute, 1999.

Updated, 2002 - 2007

Volumes 45 (1&2) - 50 (1 & 2)

by

Betty Aiga
DAL Information

**PAPUA NEW GUINEA JOURNAL OF AGRICULTURE, FORESTRY AND
FISHERIES(PNG j.agric.for.fish.)**

INDEX
1980 - 2007

CONTENTS

	Pages
List of Articles	35-43
Author Index	44-47
Subject Index	48-54

Using this Index

The articles are arranged to the order in which they were published. The numbers in the Subject Index and the Author Index refer to the numbers from the List of Articles.

How to use the Index:

1. Look up the subject term or the author's name,
2. Locate the numbers in the list of articles,
3. Locate the volume and issue numbers, then
4. Open to the page number to read the article.

The index also provide the locations of each of the title.

LIST OF ARTICLES

1980 – 2006

1. Rose, C.J., and Wood, A.W. (1980). Some environmental factors affecting earthworm populations and sweet potato production in the Tari Basin, Papua New Guinea Highlands. 31(1-4): 1-13.
2. Ghadhokar, P.A. (1980). Comparison of stylo (*Stylosanthes guianensis* var *guianensis*) cultivars in the Markham Valley of Papua New Guinea. 31(1-4): 15-21.
3. Rose, C.J. (1980). Optimum replanting stage for two varieties of pitpit (*Setaria palmifolia*) in the highlands of Papua New Guinea. 31(1-4): 23-29.
4. Shepherd, A. (1980). Replanting on copra plantations. 31(1-4): 31-35.
5. Smith, E.S.C. (1980). *Zophiuma lobulata* Ghauri (Homoptera: Lophopidae) and its relation to the Finschafen coconut disorder in Papua New Guinea. 31(1-4): 37-45.
6. Holmes, J.H.G. (1980). Toxicity of *Leucaena leucocephala*. II: reduces fertility of heifers grazing *Leucaena leucocephala*. 31(1-4): 47-50.
7. Holmes, J.H.G.; Lemerle, C. and Schottler, J.H. (1980). *Imperata cylindrica* for cattle production in Papua New Guinea. 31(1-4): 51-62.
8. Room, P.M. (1980). Insect fauna of oil palm in the Northern Province of Papua New Guinea. 31(1-4): 63-67.
9. Rose, C.J. and White, G.A. (1980). Apparent digestibilities of dry matter, organic matter, crude protein, energy and acid detergent fibre of chopped, raw sweet potato (*Ipomoea batatas* (L.) by village pigs (*Sus scrofa papuensis*) in Papua New Guinea. 31(1-4): 69-72.
10. Greve, J.E. van S. and Ismay, J.W. (1983). Crop insect survey of Papua New Guinea from July 1st, 1969, to December 31st, 1978. 32(1-4): 1-20.
11. Smith, E.S.C. (1984). Results of three insecticide trials against cocoa podsuckers in the Northern Province. 33(1-2): 1-11.
12. Young, G.R. (1984). A checklist of mite and insect pests of vegetable, grain and forage legumes in Papua New Guinea. 33(1-2): 13-38.
13. McGregor, A.J. (1984). Control of Phytophthora seedling blight of cocoa. 33(1-2): 39-50.
14. Clarkson, D. and Moles, D.J. (1984). Effects of four fungicides on the growth of *Phytophthora colocasiae*. 33(1-2): 51-53.
15. Sundberg, P. and Richards, A. (1984). Deep-sea bottom handline fishing in Papua New Guinea: a pilot study. 33(1-2): 55-62.
16. Norris, K.R. and Owen, I.L. (1984). *Muscidae* (Diptera) associated with cattle in Papua New Guinea. 33(1-2): 63-67.
17. Humphrey, J.D. (1984). Note on the prevalence and distribution of the eyeworm of the domestic fowl in Papua New Guinea. 33(1-2): 69-70.
18. Smith, E.S.C. (1985). A review of relationships between shade types and cocoa pest and disease problems in Papua New Guinea. 33(3-4): 79-88.
19. Bourke, R.M. (1985). Sweet potato (*Ipomoea batatas*) production and research in Papua New Guinea. 33(3-4): 89-108.
20. Holmes, J.H.G. and Absalom, P. (1985). Growth rates of Priangan crossbred sheep and some effects of internal parasitism, in the lowlands of Papua New Guinea. 33(3-4): 109-113.
21. Gwaiseuk, W.R.J. and Holmes, J.H.G. (1985). Intake digestibility and growth by tropical breeds of cattle consuming tropical grasses supplemented with mill run. 33(3-4): 115-121.
22. Smith, E.S.C.; Thistleton, B.M. and Pippet, J.R. (1985). Assessment of damage and control of *Helopeltis calvifer* (Heteroptera: Miridae) on tea in Papua New Guinea. 33(3-4): 123-131.
23. Benjamin, C. (1985). Some food market influences of a large-scale small-holder development in the West New Britain area of Papua New Guinea. 33(3-4): 133-141.
24. Sutherland, J.A. and Bull, P.B. (1985). Pollination and fruit set in two species of pumpkin in lowland Papua New Guinea. 33(3-4): 143-147.
25. Street, J.M. (1985). Book review (Climate of Papua New Guinea). 33(3-4): 149-151.
26. Parfitt, R.L. (1985). Book review (Soils of Papua New Guinea). 33(3-4): 153-154.

27. **Williams, D.J.** (1986). Scale insects (Homoptera: Coccoidea) on coffee in Papua New Guinea. 34(1-4): 1-7.

28. **Arentz, F.** (1986). A key to *Phytophthora* species found in Papua New Guinea with notes on their distribution and morphology. 34(1-4): 9-18.

29. **D'Souza, E. and Bourke, R.M.** (1986). Intensification of subsistence agriculture on the Nembu Plateau, Papua New Guinea. 1. General introduction and inorganic fertilizer trials. 34(1-4): 19-28.

30. **D'Souza, E. and Bourke, R.M.** (1986). Intensification of subsistence agriculture on the Nembu Plateau, Papua New Guinea. 2. Organic fertilizer trials. 34(1-4): 29-39.

31. **D'Souza, E., Bourke, R.M. and Akus, W.L.** (1986). Intensification of subsistence agriculture on the Nembu Plateau, Papua New Guinea. 3. Sweet potato cultivar trials: Crop rotation trials and crop introductions. 34(1-4): 41-48.

32. **Muthappa, B.N. and Bull, P.B.** (1986). Collar and root rot of aibika (*Abelmoschus manihot*). I: pathogenicity and effect of systemic fungicides. 34(1-4): 49-53.

33. **Dalzell, P.J.** (1986). The distribution and production of anchovies in Papua New Guinea waters. 34(1-4): 59-70.

34. **Mahoney, D. and Yamb, R.** (1986). Pathogenic bacteria isolated from chickens sold at the Lae market. 34(1-4): 71-75.

35. **Abdelsamie, R.E.** (1986). Effect of day-old debeaking and fowl pox vaccination on the performance of broiler chickens in Papua New Guinea. 34(1-4): 77-79.

36. **Abdelsamie, R.E.** (1986). A study of nutritional problems affecting the smallholder broiler industry in Papua New Guinea. 34(1-4): 81-84.

37. **Owen, I.L.** (1990). Blood parasites of cattle in Papua New Guinea. 35(1-4): 1-11.

38. **Abeysekera, S. and Nembou, C.S.** (1990). Rainfall analysis for improved agricultural planning. 35(1-4): 13-21.

39. **Dalzell, P.J. and Wright, A.** (199). Analysis of catch data from an artisanal coral reef fishery in the Tigak Islands, Papua New Guinea. 35(1-4): 23-36.

40. **Lamothe, L., Arentz, F. and Karimbaram, R.** (1990). Germination of cassowary egested and manually defleshed fruit. 35(1-4): 37-42.

41. **Cox, P.G. and Kasimani, C.** (1990). Control of taro leaf blight using metalaxyl: Effect of dose rate and application frequency. 35(1-4): 49-55.

42. **Dwyer, Peter D. and Minnegal, M.** (1993). Banana Production by Kubo People of the Interior Lowlands of Papua New Guinea. 36(1): 1-21.

43. **Gollifer, D.E.** (1993). Effects of applications of mulch and potassium on *Capsicum annuum*. 36(1): 22-29.

44. **Cragg, S.M.** (1993). Wood break-down in mangrove ecosystems: A review. 36(1): 30-39.

45. **Onaga, I.; Carrick, M. and Owens, C.** (1993). Analysis of copper and its status in cattle from Morobe Province, Papua New Guinea. 36(1): 40-53.

46. **Gollifer, D.E.** (1993). Fertilizer trials with tumeric (*Curcuma domestica* Val.) at Santa Cruz, Solomon Islands. 36(1): 54-59.

47. **Sowei, J.W. and Osillis, P.** (1993). Aibika (*Abelmoschus manihot*) germplasm in Papua New Guinea. 36(1): 60-69.

48. **Kuniata, L.S. and Young, G.R.** (1993). The use of chlorpyrifos in controlling weevil borer, *Rhabdoscelus obscurus* Boisduval. (Coleoptera: Curculionidae) in Sugarcane sets. 36(1): 76-78.

49. **Moat M. and Dryden, M.G.** (1993). Nutritive value of sweet potato forage (*Ipomoea batatas* (L.) Lam) as a ruminant animal feed. 36(1): 79-85.

50. **Sillitoe, P.** (1993). Soil and cultivation in the Papua New Guinea Highlands: I. Indigenous appraisal of the variable agricultural potential of soils. 36(1): 86-94.

51. **Foy, T.J.** (1993). Urbanization and the urban poor – Vanuatu's food security challenge. 36(1): 95-104.

52. **Sillitoe, P.** (1993). Soil and cultivation in the Papua New Guinea Highlands. II. A comparison of indigenous and scientific perspectives. 36(2): 1-21.

53. **Onaga, I.** (1993). The total mercury concentrations in fish from certain southern coastal waters and North Solomons Province of Papua New

Guinea. 36(2): 22-28.

55. Majer, J.D. and Queiroz, M.V.B. (1993). Distribution and abundance of ants in a Brazilian subtropical coffee plantation. 36(2): 29-35.

56. Rolston, L.H.; Aalbu, R.L.; Murray, M.J. and Rider, D.A. (1993). A catalog of the *Tessaratomidae* of the world. 36(2): 36-108.

57. Evara, R. (1994). Working for a better tomorrow for agriculture in Papua New Guinea. 37(1): 7-8.

58. Caruthers, F. (1994). Management of agriculture sector in PNG economy. 37(1): 9-14.

59. May, R. (1994). Delivery of agricultural services in PNG: ADB's perspective. 37(1): 15-18.

60. Setae, M. (1994). Strategies and options towards the next decade - DAL views. 37(1): 19-24.

61. Menz, K.M. (1994). Pros and cons of agricultural research in developing countries - a prospect. 37(1): 25-29.

62. French, B.R. (1994). Technology assessment and transfer for sustainable agriculture and rural development - an FAO global view. 37(1): 30-31.

63. Sitapai, E.G.; Wayi, B.M. and Ghodake, R.D. (1994). The Papua New Guinea national agricultural research system: Its policy framework and development perspective. 37(1): 32-40.

64. Ihekoroeny, A. (1994). Meeting the developmental challenges of the livestock industry in Papua New Guinea. 37(1): 41-43.

65. Bakau, B.J.K. and Galgal, K.K. (1994). Livestock research and development in Papua New Guinea. 37(1): 44-48.

66. McKillop, B. (1994). Extension performance management: International trends for the 1990s. 37(1): 49-55.

67. Bakani, F. (1994). Reorganization of agricultural extension services in Papua New Guinea. 37(1): 56-67.

68. Daur, L. (1994). Agriculture extension services in Madang. 37(1): 68-70.

69. Mopafi, I. (1994). Agriculture extension services in Madang. 37(1): 71-72.

70. Hamou, K. (1994). Agricultural extension services in Manus Province. 37(1): 73-83.

71. Gumoi, M. (1994). The role of price subsidies in agriculture in Papua New Guinea. 37(1): 84-91.

72. Fernando, N. (1994). Improving rural institutional finance: Some lessons. 37(1): 92-103.

73. Kannapiran, C. (1994). Sustainable rural credit for agricultural development in PNG. 37(1): 104-116.

74. Longimire, J. (1994). Marketing systems for agriculture: Diagnosing problems and price and market analysis for Papua New Guinea. 37(1): 117-132.

75. Mangila, F. (1994). Proposed Market Research and intelligence Service Branch. 37(1): 133-138.

76. Ivens, R.J. (1994). Quarantine - a client oriented approach. 37(1): 139-146.

77. Kanawi, D.; Bannick, A. and Kula, G. (1994). The process of quarantine in PNG an dit's present status. 37(1): 147-151.

78. Jones, A. (1994). The development of small-scale food processing enterprises. 37(1): 152-162.

79. Pondikou, P. (1994). Human resource development in agriculture sector - DAL's projections. 37(1): 163-167.

80. Hua, H.T. (1994). Agricultural information and publication systems and services. 37(1): 168-173.

81. Erai, H. and Kumar, R. (1994). Agricultural Information and Publication systems and Services (AI&PSS) suitable for PNG needs. 37(1): 174-177.

82. Kaptigau, J. (1994). Resolutions and recommendations arising from the consultative Seminar. 37(1): 178-180.

83. Camarotto, C. and Bourke, R.M. (1994). Potential for exporting fruit from Papua New Guinea to overseas markets during their off-seasons. 37(2): 2-13.

84. Rodoni, B.C.; Dale, J.L. and Harding, R.M. (1994). Review of alomae disease of taro. 37(2): 14-18.

85. Sajjad, M.S. (1994). Comparative study on ratooning potential of standard rice varieties of PNG. 37(2): 19-22.

86. Dowling, A.J.; Konabe, B. and Tigat, R. (1994). Nutritional assessment of steeply sloping soils from Aiyura in the Eastern Highlands of Papua New Guinea. 37(2): 23-29.

87. Smith, E.S.C. (1994). Notes on two minor insect pests in the Highlands region. 37(2): 30-35.

88. Kuniata, L.S. and Nagaraja, H. (1994). Insects of the giant sensitive plant (*Mimosa invisa*) at Ramu, Papua New Guinea. 37(2): 36-39.

89. Pitala, J.A. and Sivasupiramaniam, S. (1994). Effects of goat manure, NPK-fertilizer, insecticides and fungicides, and compost on potato yield at the Yasubi Rural Extension Centre. 37(2): 40-46.

90. Kuniata, L.S. (1994). *Cordyceps* sp. An important entomopathogenic fungus of cicada nymphs at Ramu, Papua New Guinea. 37(2): 47-52.

91. Philemon, E.C. (1994). An overview of the pathology of genus *Colocasia*. 37(2): 53-61.

92. Wagih, M.E. (1994). Fiji disease virus of sugarcane: A review of techniques for its diagnosis and elimination from tissue culture and planting materials. 37(2): 62-66.

93. Gibson, J. (1994). The price elasticity of demand for Papua New Guinea exports of cocoa and coffee. 37(2): 67-75.

94. Laup, S. (1994). Pests and diseases of shade trees and their relation to cocoa in Papua New Guinea. 37(2): 76-85.

95. Toreu, B. (1994). Survey results for PNG cocoa bean quality factors. 37(2): 86-93.

96. Konam, J.K. and Waine, W. (1994). The current status of the pink disease (*Coriocium salmonicolor*) of cocoa in Papua New Guinea. 37(2): 94-99.

97. Dowling, a.J.; Blamey, F.P.C. and Hoa, T. (1995). Limitation to Sweet Potato growth in small volumes of soil imposed by water and nutrient stress, acidity and salinity. 38(1): 2-10.

98. Akus, W.L. and Nema, R.K. (1995). Evaluation of twenty five vegetable varieties at Aiyura, Eastern Highlands Province. 38(1): 11-16.

99. Akus, W.L. (1995). Evaluation of introduced sweet potato cultivars at Aiyura in the Eastern Highlands of Papua New Guinea. 38(1): 17-21.

100. Sajjad, M.S. (1995). Development of modern upland rice (*Oryza saliva* L.) varieties with superior milling and physicochemical traits, for Papua New Guinea. 38(1): 22-30.

101. Ivancic, A.; Simin, A.; Ososo, E. and Okpul, T. (1995). Wild Taro (*Colocasia esculenta* (L.) Schott) populations in Papua New Guinea. 38(1): 31-45.

102. Amoa, B.; Dekuku, R. Chris and Nigo, R.Y. (1995). Consumer preference of some rice varieties grown locally in Papua New Guinea. 38(1): 46-50.

103. Roth, Louis M. (1995). New species of *Allacta*, *Saussure* and *Zehnhnther* from Papua New Guinea, Irian Jaya and Sarawak (Blattaria, Blattellidae: Pseudoglyydrominae). 38(1): 51-71.

104. Sowi, J.W. (1995). Onion cultivar selection for the lowlands of Central Province. 38(2): 76-83.

105. Louman, B.; Hasagama, M.; Bigol, C. and Gamuna, P. (1995). Regeneration and residual stand after wokabaut somil operations in seasonally inundated forest near Lae, Papua New Guinea. 38(2): 84-93.

106. Young, G.R. and Kuniata, L.S. (1995). The population dynamics of the borer, *Sesamia grisescens* Walker (Lepidoptera: Noctuidae), on sugarcane in the Ramu valley of Papua New Guinea. 38(2): 94-101.

107. Kanua, M.B. (1995). A review of properties, nutrient supply, cultivation and management of volcanic soils, with particular reference to Papua New Guinea. 38(2): 102-123.

108. Sajjad, M.S. (1995). Influence of different N, P, K doses on yield and yield components of two standard rice varieties of PNG under lowland field conditions. 38(2): 124-129.

109. Young, G.R. (1996). An association between the crazy ant *Anoplolepis longipes* (Jerdon) (Hymenoptera: Formicidae) and the coconut spathe moth, *Tirathaba rufivena* (Walker) (Lepidoptera: Pyralidae) on coconut palms in the Morobe Province of Papua New Guinea. 1. Surveys to determine the extent of crop loss and the incidence of natural enemies of the moth. 39(1): 1-6.

110. Young, G.R. (1996). An association between the crazy ant *Anoplolepis longipes* (Jerdon) (Hymenoptera: Formicidae) and the coconut spathe moth, *Tirathaba rufivena* (Walker) (Lepidoptera: Pyraidae) on coconut palms in the Morobe Province

of Papua New Guinea. 2. The effects on yield and nut shedding of ant and moth exclusion. 39(1): 7-11.

111. Okpul, T. and Ivancic, A. (1996). Hybridization of taro (*Colocasia esculenta*) (L.) Schott: Floral development and stigma receptivity. 39(1): 12-18.

112. Allotey, J. and Kumar, R. (1996). Reproductive strategy of the parasitic wasp *Bracon hebetor* (Say) (Hymenoptera: Braconidae) on the rice moth *Corcyra cephalonica* (Staint). 39(1): 19-21.

113. Rolston, L.H.; Rider, D.A.; Murray, M.J. and Aalbu, R.L. (1996). A catalog of the *Dinidoridae* of the world. 39(1): 22-101.

114. Darkoh, M.B.K. (1996). Papua New Guinea, an archipelago nation under environmental stress. 39(1): 102-117.

115. Amoa, B.; Fuba, S; Nigo, R.Y. and Dekuku, R. Chris (1996). Physioco-chemical and organoleptic properties of traditional rice varieties from Finschafen. 39(2): 1-5.

116. Ivancic, A. and Okpul, T. ((1996). A new mutation of taro (*Colocasia esculenta*) observed at Bubia Agricultural Research Centre. 39(2): 6-9.

117. Young, G.R.J. (1996). The crazy ant, *Anoplolepis longipes* (Jerdon) (Hymenoptera: Formicidae) on coconut palms in New Guinea. 39(2): 10-13.

118. Sivasupiramaniam, S.; Benjamin, A.K. and Pitala, J.A. (1996). Effect of sheep manure and Phosphorus fertilizer on potato and succeeding maize and cassava crops. 39(2): 14-19.

119. Saulei, S.M. (1996). A bibliography of the flora and vegetation of Papua New Guinea. 39(2): 29-168.

120. Kuni, T. and Hartemink, A.E. (1997). Soil chemical properties under primary forest and coffee in the Kutubu area of Papua New Guinea. 40(1-2): 1-5.

121. Hartemink, A.E.; Johnston, M.; John, P.; Julius, W. and Kerru, A. (1997). Biomass production and nutrient uptake of taro roots. 40(1-2): 6-12.

122. Okpul, T.; Ivancic, A. and Simin, A. (1997). Evaluation of leaf blight resistant taro (*colocasia esculenta*) varieties for Bubia, Morobe Province, Papua New Guinea. 40(1-2): 13-18.

123. Gunua, T.G. (1997). Effect of contaminants in tissue cultures of taro (*Colocasia esculenta*). 40(1-2): 19-21.

124. Gunua, T.G. (1997). Foliar diseases of taro in the Wahgi Valley of the Western Highlands Province of Papua New Guinea. 40(1-2): 22-26.

125. Taramurray, P. and Onwueme, I.C. (1997). Generation of taro (*Colocasia esculenta*) planting materials using treated split corm apices. 40(1-2): 27-31.

126. Mubyana, T. and Saulei, S.M. (1997). Vascular arbuscular mycorrhizae-tru association of Varirata National park and the influence of vegetation types. 40(1-2): 32-39.

127. Evans, C. and Tumi, C. (1997). Assessment of the prawn resources of orangeric Bay, Milne Bay Province. 40(1-2): 40-46.

128. Humphreys, G. (1998). A review of some important soil studies in Papua New Guinea. 41(1): 1-19.

129. Freyne, D.F. (1998). Interpreting soil data from Papua New Guinea Resource Information System (PNGRIS). 41(1): 20-28.

130. Radcliffe, D.J. and Kanua, M.B. (1998). Properties and management of andisols in the highlands of Papua New Guinea. 40(1): 29-43.

131. Harding, P.E. and Hombunaka, P. (1998). A review of coffee nutrition research in Papua New Guinea. 40(1): 44-64.

132. Hartemink, A.E.; Nero, J.; Ngere, O. and Kuniata, L.S. (1998). Changes in soil properties at Ramu Sugar Plantation 1979-1996. 40(1): 65-78.

133. Kanua, M.B. (1998). The response of three sweet potato cultivars to inorganic fertilizers on an andisol in the highlands of Papua New Guinea. 40(1): 79-84.

134. Sayok, A.K. and Hartemink, A.E. (1998). Erosion and soil fertility changes under *Leucaena* intercropped with sweet potato in the lowlands of Papua New Guinea. 40(1): 85-90.

135. Louman, B. and Hartemink, A.E. (1998). Sweet potato production in hedgrow intercropping system in the lowlands of Papua New Guinea. 40(1): 91-98.

136. Beaudoin-Ollivier, L.; Prior, R.N.B. and Laup, S. (1998). A field key to identify some Rhinoceros and other beetle larvae breeding in coconut palm habitats in Papua New Guinea. 41(2): 1-15.

137. Manua, Peter A. (1998). Production performance: an economic analysis of smallholder coffee producers. 41(2): 16-20.

138. Sopade, Peter A. (1998). The performance characteristics of a typical pilot-scale tray drier. 41(2): 21-26..

139. Kumar, R. (1998). Method of assessing losses in stored food products. 41(2): 27-31.

140. Gunua, T.G.; Kokoa, P. and Darie, A. (1998). Effect of mixed planting of taro blight resistant varieties on the disease and yield of a preferred susceptible taro variety. 41(2): 32-36.

141. Gibson, John (1998). Urban demand for food, beverages, betelnut and tobacco in Papua New Guinea. 41(2): 37-42.

142. Evans, C.R.; Kare, B.D.; Baule, L. and Jumbi, M. (1998). Field studies in the depth distribution of recruit-sized prawns *Penaeus merguiensis* and *P. monodon* in the Gulf of Papua: Implications of management. 41(2): 43-57.

143. Poloma, S.; Onwueme I.C. and Johnston M. (1999). Propagation of lesser yam (*dioscorea esculenta*) using vine cuttings. 42(1-2): 3-6.

144. Gunua, Tony G. and Kokoa Pere (1999). Effect of different types of fungicides an early blight and yield of tomato. 42(1-2): 7-14.

145. Aregheore, Eroarome M. (1999). Anti-quality and toxic components in some food plants consumed by humans and livestock in the South Pacific region: Review. 42(1-2): 15-21.

146. Gunua, Tony G. (1999). Field evaluation of fungicides against Purple Blotch (*Alternaria porri*) of bulb onion (*Allium cepa*). 42(1-2): 23-26.

147. Johnston, M. and Onwueme, I.C. (1999). Productivity of lesser yam (*Dioscorea esculenta*) in PNG as influenced by sett weight and staking. 42(1-2): 27-34.

148. Sipou, R. Gubag and Omoloso, A.D. (1999). Organoleptic Characteristics of Sapal: A traditional fermented taro (*Colocasia esculenta*) corm and coconut cream mixture from Papua New Guinea. 42(1-2): 35-37.

149. Bamba, J.; Cruz, J.A.; Diambra, O.H. and Muniappan, R. (1999). Research Note: Head Cabbage variety study for tipburn resistance. 42(1-2): 38-39.

150. Prime Minister, Rt. Sir Morauta, Mekere Kt., MP. (2000). Speech at the Opening of Policy and Strategy 2000 and the 17th National Agriculture Council Conference Lae, 07 August 2000. 43(1): 5-8.

151. Honourable Avei, Moi MP. (2000). Planning for National Economic Growth through Agriculture. 43(1): 9-11.

152. Honourable Nali, Michael MP. (2000). Agriculture Trade. 43(1): 12-15.

153. Honourable Philemon, Bart MP. (2000). Transport – Key to Agriculture Development. 43(1): 16-18.

154. R. Honourable Sir Somare, Michael GCMG, MP. (2000). Agriculture and the Bougainville Peace Process. 43(1): 19-23.

155. Boeha Beno. (2000). Sustainable Agriculture Credit. 43(1): 24-26.

156. Wenge Kino and Gwaiseuk William. (2000). Agriculture Policy and Strategies for Economic Growth. 43(1): 27-34.

157. Tololo, Alkan, KBE.; Ghodake, R.D. and Kambori Valentine. (2000). Focus for Agricultural Research in PNG.

158. Lahis, Sam. (2000). Strategic directions for the Papua New Guinea Cooperative Extension system in the New Millennium. 43(1): 45-57.

159. Kumar, Ray (2000). Importance of Agricultural Information. 43(1): 58-63.

160. Franklin, Phil. (2000). Agriculture Marketing. 43(1): 64-66.

161. Golding Wayne. (2000). Downstream Processing of Agriculture products. 43(1): 67-68.

162. Waghi Mohammed. (2000). Biosafety Regulatory Policy in Biotechnology. 43(1): 69-76.

163. Mazewin Yawal. (2000). Projects for Palm Oil Industry. 43(1): 77-81.

164. **Kopi Pugma.** (2000). Current status and prospects for Coffee Industry in the New Millennium. 43(1): 82-88.

165. **Namaliu Robinson.** (2000). The PNG Coconut Industry in the New Millennium. 43(1): 89-94.

166. **Galrich Rahman.** (2000). Prospects for Rubber Industry. 43(1): 95-101.

167. **Tulo, Sam, OBE.** (2000). Prospects for Cocoa Industry in the New Millennium. 43(1): 102-107.

168. **Waisime, Michael.** (2000). Prospects for a Spice Industry in Papua New Guinea. 43(1): 108-119.

169. **Bubar, Gony.** (2000). Prospects for a Papua New Guinea Livestock Industry (Cattle). 43(1): 120-122.

170. **Hargreaves, Bob.** (2000). Prospects for Fresh Produce Industry. 43(1): 123-127.

171. **Takendu, Daniel.** (2000). Quality Control in Agricultural Industry. 43(1): 128-134.

172. **Maru, Richard and Auntari, Caspar.** (2000). Smallholder Agriculture Credit Scheme. 43(1): 135-143.

173. **Setae, Miri, MBE.** (2000). Policy and Strategy. 43(1): 144-149.

174. **Honourable Zemling, Mao, MP.** (2000). Agriculture Policy and Strategies. 43(1): 150-151.

175. **Bang, S. and Wiles, G.C.** (2001). The Control of Bacterial Wilt (*Ralstonia solanacearum*) of potato by crop rotation in the Highlands of Papua New Guinea. 44(1-2): 5-11.

176. **Sillitoe, P.** (2001). Demographic study of pig management in the Southern Highlands Province, Papua New Guinea. 44(1-2): 12-32.

177. **Sopade, P.A., Kuipa, W. and Risimeri, J.B.** (2001). Evaluation of selected food properties of white yam (*Dioscorea rotundata*) in Papua New Guinea. 44(1-2): 33-43.

178. **Pitala, J.** (2001). Effect of different plant spacings on the yield and yield components of rice variety nupela under rainfed field conditions at Erap station. 44(1-2): 44-48.

179. **Julien, Mic. H. and Orapa, W.** (2001). Insects used for biological control of the aquatic weed water hyacinth in Papua New Guinea. 44(1-2): 49-60.

180. **Dekuku, R.C.** (2001). Constraints analysis of the rice and grain industry in Papua New Guinea. 44(1-2): 61-65.

181. **Dekuku, R.C.** (2001). Pilot phase rice production in Markham valley of Papua New Guinea shows great promise. 44(1-2): 66-75.

182. **Bang, S.K. and Lutulel, R.** (2001). The performance of granola potato at four sites in the Highlands of Papua New Guinea. 44(1-2): 76-78.

183. **Ajuyah, A.O.** (2002). Performance and economic evaluation of broiler chickens fed two cultivars of cassava. 45(1-2): 7-12.

184. **Aregheore, E.M. and Yahaya, M.S.** (2002). Effect of fresh leucaena (*Leucaena leucocephala*) leaf supplementation on the growth of young Anglo-Nubian crossbred goats feeding either batika (*Ischaemum anistatum* var. *Indicum*) and guinea (*Panicum maximum*) grass. 45(1-2): 13-18.

185. **Bino, B. and Kanua, M.B.** (2002). Growth litter yield and litter nutrient composition of *Casuarina oligon* in Papua New Guinea Highlands. 45(1-2): 19-23.

186. **Ero, M.M.** (2002). Host plants of *Amblypelta* (Coreidae: Heteroptera) in Papua New Guinea. 45(1-2): 25-31.

187. **Okpul, T.; Singh, D.; Wagih M.E. and Hunter D.** (2002). A review of taro (*Colocasia esculenta*) (L.) Schott genetic resources of Papua New Guinea. 45(1-2): 33-45.

188. **Kokoa, P.** (2002). Alternaria stem and leaf blight of sweet potato (*Ipomoea batatas* (L.) Lam.); a new disease in the highlands of Papua New Guinea. 45(1-2): 47-51.

189. **Ignatius, S. and Quartermain, A.** (2002). Evaluating high and low nutrient density feed for finishing stages of muscovy broiler ducks. 45(1-2): 53-57.

190. **Mararuai, A.; Allwood, A.; Balagawi, S.; Dori, F.; Kalamen, M.; Leblanc, L.; Putulan, D.; Sar, S.; Schuhbeck, A.; Tenakanai, D. and Clarke, A.** (2002). Introduction and distribution of *Bactrocera musae* (Tryon) (Diptera: Tephritidae) in East New Britain, Papua New Guinea. 45(1-2): 59-65.

191. Pitala, J.A.; Blair, G.J. and Till, R.A. (2003). Elemental sulfur coated fertilizer materials as sulfur sources for rice under flooded and non-flooded conditions. 46 (1-2): 3-19.

192. Dekuku, R.C. and Benjamin, A.K. (2003). Constraints and results analysis of the Spice Industry in Papua New Guinea. 46 (1-2): 21-30.

193. Dekuku, R.C. and Anang, J. (2003). Attempts at gaining some understanding of the possible factors that promote HIV/AIDS spread in Papua New Guinea. 46 (1-2): 31-39.

194. Wanamboi, J.G.; Sajjad, M.S.; Beko, A. and Masamdu, R. (2003). Eating quality of promising rice varieties evaluated at several locations in Papua New Guinea. 46 (1-2): 41-45.

195. Akanda, S.I.; Tomda, Y. and Maino, M.K. (2003). Sheath blotch of rice - a new report in Papua New Guinea. 46 (1-2): 47-48.

196. Quartermain, Alan R. (2004). Environmental Implications of Livestock Production in Papua New Guinea. 47 (1-2): 2-10.

197. Macanawai, A.R.; Ebenebe, A.A.; Hunter, D. and Harding, R. (2004). Distribution and Alternative Hosts of Taro Bacilliform Badnavirus in Samoa. 47 (1-2): 11-16.

198. Wossa, Steward W.; Rali, Topul and Leach, David N. (2004). Analysis of Essential Oil Composition of some selected Spices of Papua New Guinea. 47 (1-2): 17-20.

199. Kokoa, Pere (2004). Review of Sweet Potato Diseases and Research in Papua New Guinea. 47 (1-2): 21-36.

200. Iramu, E.T.; Akanda, S.I.; Wagh, M.E.; Singh D. and Fullerton R.A. (2004). Evaluation of Methods for screening taro (*Colocasia Esculenta*) Genotypes for Resistance to Leaf Blight Caused by *Phytophthora Colocasiae*. 47 (1-2): 37-44.

201. Pandi J. (2005). Addition of copra meal to commercial feed for broiler chicken production. 48 (1-2): 3-6.

202. Zainudin, E.S. and Sapuan, S.M. (2005). A review of banana Pseudo-stem fibre reinforced composites. 48 (1-2): 7-12.

203. Akanda, S. (2005). Reaction to diseases by four rice varieties in two agro-ecological location in Morobe Province. 48 (1-2): 13-19.

204. Wossa, S.W.; Rali, Topul and Leach, D.N. (2005). Analysis of the volatile chemical constituents of tumeric (*curcuma longa* linn: Zingiberaceae). 48 (1-2): 21-24.

205. Danbaro, G. (2005). Live weight gains of brahman beef entire males compared with steers implanted with compudose[®]. 48 (1-2): 25-27.

206. Kambuou, R.N. (2005). Banana varieties tested for Sigatoka disease resistance under irrigated conditions in Papua New Guinea. 48 (1-2): 29-34.

207. Ero, Mark M. (2006). The distribution of *amblypelta* stål species (Hemiptera: Coreidae) in Papua New Guinea. 49 (1): 03-06.

208. Ackonor, J.B; Opoku, G.O.; Godonou, I. and Nkansah, A. (2006). Prospects of biological control of the cocoa mirid, *Sahibergella singularis* sahl (heteroptera) in Ghana: Field surveys for entomopathogens and laboratory bioassays with *Beauveria bassiana* isolates. 49 (1): 07-11.

209. Quartermain, A.R. (2006). Current issues and initiatives in the conservation and management of sheep genetic resources. 49 (1): 13-19.

210. Kuniata, L.S. (2006). Integration of insecticides in the management of *sesamia grisescens* warren (Lepidoptera: Noctuidae) in sugarcane at Ramu, Papua New Guinea. 49 (1): 21-29.

211. Kuniata, L.S.; Chandler, K.J.; Nagaraja, H. and Young G.R. (2006). Phytophagous insects on broadacre sugarcane in Papua New Guinea. 49 (1): 31-35.

212. Kuniata, L.S.; Rauka, G. and Magarey, R.C. (2006). Management strategies for ratoon stunting disease in sugarcane at Ramu Sugar. 49 (1): 37-41.

213. Risimeri, J. (2006). Effect of progressive bi-monthly weeding on the yield of yam (*Dioscorea esculenta*) at Saramandi, East Sepik Province. 49 (1): 43-47.

214. Wossa, S.W.; Rali, T. and Leach, D.N. (2006). Volatile chemical constituents of patchouli (*Pogostemon cablin* (blanco) Benth.: Labiateae) from three localities in Papua New Guinea. 49 (1): 49-54.

215. Onaga, I.I. (2006). Glucosinolates - a literature review. 49 (1): 55-66.

216. **Ero, Mark M.; Clarke, Anthony R.; Wesis, P. and Niagu, B.** (2006). Pest species of the genus *Oribius* Marshall (Coleoptera: Curculionidae) in Papua New Guinea. 49 (2): 3-13.

217. **Danbaro, Gariba; Sivasupiramaniam, Siva and Benjamin, Anton.** (2006). Analyses of birth weight of crossbred lambs at Menifo, Papua New Guinea. 49 (2): 15-18.

218. **Gulf, Joe and Komolong, B.** (2006). Impact Assessment of Three Improved Taro (*Colocasia esculenta*) Varieties in the Morobe Province, Papua New Guinea. 49 (2): 19-27.

219. **Halim, Abdul and Kerua, William.** (2006). Farmers opinion on rice growing in Papua New Guinea. 49 (2): 29-34.

220. **Akanda, Shamsul and Maino, Macquin.** (2006). Incidence and severity of rice diseases in six provinces of Papua New Guinea. 49 (2): 35-40.

221. **Wesis, Pus; Niangu, Benjamin; Ero, Mark; Elmouttie, David and Clark R. Anthony.** (2007). Efficacy of five insecticides against *Oribius inimicus* Marshall and *O. destructor* Marshall (Coleoptera: Curculionidae). 50 (1 & 2): 3-8.

222. **Dom, Michael.** (2007). Assessment of Kavalactones in Kava, *Piper methysticum* Forst. f., Cultivars of Papua New Guinea. 50 (1 & 2): 9-14.

223. **Malangen, Stanis and Komolong, Birte.** (2007). Selection of rice (*Oryza sativa* L.) varieties for upland rainfed conditions in Papua New Guinea. 50 (1 & 2): 15-22.

224. **Yombo, Andy K.; Samad, M.A.; and Reid, S.** (2007). Prevalence of antibodies to Leptospiral Serovars in farm ruminant animals in the Markham valley, Papua New Guinea. 50 (1 & 2): 23-27.

225. **Muneer, Dr. Muhammad.** (2007). Yield of four varieties of rice (*Oryza Sativa* L.) in two soil types and contrasting agro-ecological zones. 50 (1 & 2): 29-36.

226. **Wossa, Steward W.; Rali Topul and Leach David N.** (2007). Volatile chemical constituents of Patchouli (*Pogostemon cablin* (Blanco) Benth.: Labiatae) from three localities in Papua New Guinea. 50 (1 & 2): 37-42.

AUTHOR INDEX		Bakani, F. (1994)	Bull, P.B. (1986)	(2003)	193
Aalbu, R.L. (1993)	56	Bakau, B.J.K. (1994)	65	Camarotto, C. (1994)	83
(1996)	113				Dom, Michael (2007)1&2 222
					Dori, F. (2002) 190
Abdelsamie, R.E. (1986)	35	Bang, S.K. (2001)	175	Caruthers, F. (1994)	58
(1996)	36	(2001)	182		Dowling, A.J. (1994) 86
				Carrick, M. (1993)	45
Abeyasekera, S. (1990)	38	Bannick, A. (1994)	77	Chadhokar, P.A. (1980)	2
				(1986)	18
Absalom, P. (1985)	19	Balagawi, S. (2002)	190	(1986)	29
				Chandler, H. (2006)1	30
Ackonor, J.B. (2006)1	208	Baule, L. (1998) 1	42	211	31
					(1994) 83
Ajuyah, A.O. (2002)	183	Beaudoin-Ollivier, L. (1998)	136	Clarke, A. (2002)	190
				(2006)2	216
				(2007)1&2	221
Akanda, S.I. (2003)	195	Beko, A. (2003)	194	D'Souza, E. (1986)	29
(2004)	200			(1986)	30
(2005)	203	Benjamin, C. (1985)	23	Dwyer, P.D. (1993)	31
(2006)2	220	(1996)	118	(1984) 11	42
				Cox, P.G. (1990)	41
Akus, W.L. (1986)	31	Benjamin, A.K. (2003)	192	Ebenebe, A.A. (2004)	197
(1995)	98	(2006)2	217		
(1995)	99			Elmouttie David (2007)1&2 221	
Allotey, J. (1996)	112	Bigol, C. (1995)	105		
				Erai, H. (1994)	81
Allwood, A. (2002)	190	Bino, B. (2002)	185	Dale, J.L. (1994)	84
				Dalzell, P.J. (1986)	33
				(1990)	39
Amoa, B. (1995)	102	Bourke, R.M. (1985)	18	Ero, M.M. (2002)	186
(1996)	115	(1986)	29	(2006)1	207
		(1986)	30	(2006)2	216
				(2007)1&2	221
Anang, J. (2003)	193	(1986)	31	Evans, C. (1997)	127
		(1994)	83	(1998)	142
Arentz, F. (1986)	28	Boeha, Beno (2000)	155	Darkoh, M.B.K. (1996)	114
(1990)	40			(1994) 57	
Aregheore, E.M. (2002)	184	Blair, G.J. (2003)	191	Daur, L. (1994)	68
				Fernando, N. (1994)	72
Auntari, Caspar (2000)	172	Blamey F.P.C. (1995)	97	Dekuku, R. Chris (1995)	102
				(1996)	115
Avei, Moi (2000)	151	Bubar, Gonny (2000)	169	(2001)	180
				(2001)	181
				(2003)	192

French, B.R. (1994)	62	Gwaiseuk, W.R.J. (1985)	21	Ihekoronye, A. (1994)	64	(2002)	185
		(2000)	156			Kaptigau, J. (1994)	82
Freyne, D.F. (1998)	129	Halim, A. (2006)2	219	Iramu, E.T. (2004)	200	Kare, B.D. (1998)	142
Fuba, S. (1996)	115	Hamou, K. (1994) 70		Ismay, J.W. (1983)	10	Karimbararam, R. (1990)	40
Fullerton, R.A. (2004)	200	Harding, R.M. (1994)	70	Ivancic, A. (1995)	101	Kasimani, C. (1990)	41
Galgal, K.K. (1994)	65	Harding, P.E. (1998)	131	(1996)	111	Kerru, A. (1997)	121
Galrich, Rahman (2000)	166	(2004)	197	(1996)	116	Kerua, W. (2006)2	219
Gamuna, P. (1995)	105	Hargreaves, Bob (2000)	170	Ivess, R.J. (1994)	76	Kokoa, P. (1998)	140
		Hartemink, A.E. (1997)	120	John, P. (1997)	121	(2002)	188
Ghodake, R.D. (1994)	63	(1997)	121	(1997)	121	(2004)	199
(2000)	157	(1998)	132				
		(1998)	134	Jones, A. (1994)	78	Komolong, B. (2006)2	218
Gibson, J. (1994)	93	(1998)	135	(1994)	78	(2007)1&2	223
(1998)	141	Hasagama, M. (1995)	105	Julias, W. (1997)	121		
Godonou, I. (2006)1	208	Hoa, T. (1995)	97	Julien, Mic H. (2001)	179	Konabe, B. (1994)	86
Gollifer, D.E. (1993)	43	Holmes, J.H.G. (1980)	6	Jumbl, M. (1998)	142	Konam, J.K. (1994)	96
(1993)	46	(1980)	7			Kopi, Pugma (2000)	164
Golding, Wayne (2000)	161	(1985)	21	Kombori, Valentine (2000)	157		
		Hombunaka, P. (1998)	131	Kalamen, M. (2002)	190	Kuipa, W. (2001)	177
Gragg, S.M. (1993)	44	Hua, H.T. (1994)	80	Kambuou, R.N. (2005)	206	Kula, G. (1994)	77
Greve, J.E. van S. (1993)	9	Humphrey, J.D. (1984)	16			Kumar, R. (1994)	81
				Kanawi, D. (1994)	77	(1996)	112
Guaf, J. (2006)2	218	Humphreys, G. (1998)	128			(1998)	139
Gumoi, M. (1994)	71	Hunter, D. (2002)	187	Kambuou R.N. (2005)	206	(2000)	157
		(2004)	197			Kuniata, L.S. (1993)	48
Gunua, T.G. (1997)	123	Ignatius, S. (2002)	189	Kannapiran, C. (1994)	73	(1994)	88
(1997)	124					(1994)	90
(1998)	140			Kanua, M.B. (1995)	107	(1995)	106
(1999)	144			(1998)	130	(2006)1	210
(1999)	146			(1998)	131		

(2006)1	211	Mangila, F.		Nagaraja, H.		Ososo, E.
(2006)1	212	(1994)	75	(1994)	88	(1995)
				(2006)1	211	47
Kuni, T.		Manus, Peter A.				Owen, I.L.
(1997)	120	(1998)	137	Nali, M.		(1984)
				(2000)	152	12
Lahis, Sam		Mararuai, A.		Namaliu, R.		(1990)
(2000)	158	(2002)	190	(2000)	165	Owens, C.
Lamothe, L.		Maru, Richard				(1993)
(1990)	40	(2000)	172	Negere, O.		45
				(1998)	132	Pandi, J.
Laup, S.		Masamdu, R.				(2005) 2
(1994)	94	(2003)	194	Nema, R.K.		01
(1998)	138			(1995)	98	Parfitt, R.L.
		May, R.				(1985)
Leach, David N.		(1994)	59	Nembou, C.S.		45
(2004)	198			(1990)	38	Philemon, Bart
(2005)	204	Mazewin Yawal				(2000)
(2006)1	214	(2000)	163	Nero, J.		153
(2007)1&2	226			(1998)	132	Philemon, E.C.
		McGregor, A.J.				(1994)
Leblanc, L.		(1984)	17	Nigo, R.Y.		91
(2002)	190			(1995)	102	Pitala, J.A.
		McKillop, B.		(1996)	115	(1994)
Lemerie, C.		(1994)	66	Niangu, B.		89
(1980)	7			(2006)2	216	(1996)
		Menz, K.M.		(2007)1&2	221	(2001)
Longimire, J.		(1994)	61			178
(1994)	74			Nkansah, A.		(2003)
		Minnegal, M.		(2006)1	208	191
Louman, B.		(1993)	42			Pippet, J.R.
(1995)	105			Norris, K.R.		(1985)
(1998)	135	Moat, M.		(1984)	12	22
		(1993)	49			Pondikou, P.
Lutulel, R.		(1993)	50	Okpul, T.		(1994)
(2001)	182			(1996)	111	79
		Mofafi, I.		(1996)	118	Prior, R.N.B.
Macanawal, A.R.		(1994)	69	(1997)	122	(1998)
(2004)	197			(2002)	187	136
		Moles, D.J.				Putulan, D.
Magarey, R.C.		(1984)	11	Onaga, I.		(2002)
(2006)1	212			(1993)	45	189
		Morauta, M.		(1993)	54	(2004)
Mahoney, D.		(2000)	150	(2006)1	215	196
(1986)	34					(2006)1
		Mubyana, T.		Onwueme, I.C.		209
Maino, M.K.		(1997)	126	(1997)	125	Quartermain, A.
(2003)	195					(2002)
(2006)2	220	Muneer, Muhammad		Opoku, G.O.		196
		(2007)1&2	225	(2006)1	208	(2004)
Majer, J.D.						(1998)
(1993)	55	Murray, M.J.		Orapa, W.		130
		(1993)	56	(2001)	179	Rali, Topul
Malangen, Stanis		(1996)	113			(2005)
(2007)1&2	223	Muthappa, B.N.		Osilis, P.		198
		(1986)	32	(1993)	47	(2006)1
						214
						(2007)1&2
						226

Rauka, G. (2006)1	212	Schuhbeck, A. (2002)	190	Takendu, Daniel (2000)	171	White, G.A. (1980)	9
Reid, S. (2007)1&2	224	Setae, M. (1994) (2000)	60 173	Taramurray, P. (1997)	125	Williams, D.J. (1986)	27
Richards, A. (1984)	14	Shepherd, A. (1980)	4	Tenakanai, D. (2002)	190	Wood, A.W. (1980)	1
Rider, D.A. (1993)	56	Sillitoe, P. (1993) (2001)	53 176	Thistleton, B.M. (1985)	22	Wossa, Steward W. (2004) (2005)	198 204
(1996)	113			Tigat, R. (1994)	86	(2006)1 (2007)1&2	214 226
Risimeri, J.B. (2001)	177	Simin, A. (1995) (1997)	101 122	Till, R.A. (2003)	191	Wiles, G.C. (2001)	175
Rodoni, B.C. (1994)	84	Singh, D. (2002)	187	Tololo, Alkan (2000)	157	Wright, A. (1990)	39
Rolston, L.H. (1993)	56	(2004)	200	Tomda, Y. (2003)	195	Yahaya, M.S. (2002)	184
(1996)	113	Sitapai, E.C. (1994)	63	Toreu, B. (1994)	95	Yamb, R. (1986)	34
Room, P.M. (1980)	8	Sivasupiramaniam, S (1994)	89	Tulo, Sam (2000)	167	Yombo, Andy K. (2007)1&2	224
Rose, C.J. (1980)	1	(1996)	118				
(1980)	3	(2006)2	217				
(1980)	9	Smith, E.S.C. (1980)	5	Tumi, C. (1997)	127	Young, G.R. (1984)	15
Roth, Louis M. (1995)	103	(1984)	13			(1993)	48
		(1985)	18	Wanamboi, J.G. (2003)	194	(1995)	106
		(1985)	22			(1996)	109
Sajjad, M.S. (1994)	85	(1994)	87			(1996)	110
(1995)	100	Somare, Michael (2000)	154	Wagih, M.E. (1994)	92	(1996)	117
(1995)	108			(2000)	168	(2006)1	211
(2003)	194	Sowell, J.W. (1993)	47	(2002)	187	Zainudin, E.S. (2005)	202
Samad M.A. (2007)1&2	224	(1995)	104	(2004)	200	(2000)	174
Sapuan, S.M. (2005)	202	Sopade, Peter, A. (1998)	138	Walne, W. (1994)	96	Zeming, Mao (2000)	
		(2001)	177				
Sar, S. (2002)	190	Street, J.M. (1985)	25	Wayi, B.M. (1994)	63		
Saulei, S.M. (1996)	119	Sundberg, P. (1984)	14	Wenge, Kino (2000)	156		
(1997)	126						
Sayok, A.K. (1998)	134	Sutherland, J.A. (1985)	24	Wesis, P. (2006)2 (2007)1&2	216 221		

SUBJECT INDEX**A**

Acidity

Varieties 97

Agriculture Marketing

160

Agricultural Services

Delivery 59

Agriculture Policy and Strategies and Economic Growth

156

Agriculture Policy and Strategies

174

Agriculture Trade

152

Agriculture and the Bougainville Peace Process

154

Aibika

germplasm 47

Rot and fungicides 32

Allacta

103

Analysis of the

rice 180

and grain industry 180

birth weight 217

crossbred lamb 217

Analysis of essential oil composition of selected species

198

Analysis of volatile chemical constituents of turmeric

204

Anchovies

33

Andisols properties management Highlands

130, 133

130

130

130, 133

Ants

crazy

in coffee plantations 55

Assessment

Prawn resources 127

Orangeric bay 127

three improved taro varieties 218
Morobe Province 218
Milne Bay Province 127
Store food products 139
Kavalactones in Kava 222Asparagus
replanting

6

B

Bacterial Wilt

175

Banana

lowlands production 42
tested for Sigatoka disease 206
resistance under irrigated
conditions 206
Papua New Guinea 206Biological control
cocoa mirid

208

Bi-monthly
weeding
yield of yam
Saramandi

213

213

213

Biomass
production

121

Biosafety Regulatory Policy
in Biotechnology.

162

Book Reviews
climate
soils

25

26

CCapsicum
mulching
potassium

43

43

Cassava
fertilizer

6

Cassowary
germination

40

Cattle
Copper
Diptera
feed digestability
and growth
fertility
Imperata
Leucaena toxicity

45

12

21

2, 46

3

2

Parasites	37	Copra replanting	8
Characteristics pilot-scale tray drier	138	Coral Reef fishery data	39
Chemical properties	138	Credit rural	73
Chicken		Current issues and initiatives	
bacteria at market	34	conservation	209
debeaking	35	management	209
eyeworm	17	sheep genetic resources	209
nutrition	36		
vaccination	35	Cultivars of Papua New Guinea	222
Cicada		D	
Nymph fungus	90		
Cocoa		Demographic study of pig management	176
bean quality	95		
demand	93	Dinidoridae	113
<i>Phytophthora</i> control	28		
pink disease	96	Diptera	
pod suckers, insecticides	13	cattle	12
seedling blight	15		
shade trees	18, 94	Distribution of recruit-size prawns	142
pests and diseases	18	<i>Penaeus merguiensis</i>	142
Coconut		<i>P. monodon</i>	142
Crazy ants and spathe moths	109, 110, 117	Gulf of Papua	142
Finschafen disorder	9	<i>amblypelta</i> stål species	207
Coconut Industry in the New Millennium	165	Downstream processing of Agriculture products	161
Cocoa Industry in the New Millennium	167	E	
Coffee		Earthworms	
ants in plantations	55	Sweet potato	5
demand	93		
scale insects	27	Economy	
Kutubu area	120	Management of agriculture	58
Coffee Industry in the New Millennium	164	Eggs	
Coffee pulp on sweet potato		Preserving quality	49
Compost		Environmental Stress	114
potato yield	89		
Copper		Erosion	
cattle	45	soil fertility	134
		intercropped	134
		Export	
		Cocoa and coffee demand	93
		Potential, fruit	83

Extension		Fungicides	
Eastern Highlands	69	aibika rot	32
performance trends	66	potato yield	89
reorganisation	67	early blight	144
services Madang	68	yield of tomato	144
services Manus	70		
Eyeworm	17	Fungus	
		cicada nymph	90
F		G	
Farmers opinion		Germination	
rice growing in png	219	cassowary	40
Farm		H	
ruminant animals	224	Human Resource	
Feed		Development	79
sweet potato	5, 7	I	
cattle	2	Identify	
Fertiliser		rhinoceros	136
inorganic	29	beetle larvae	136
organic	30	breeding	136
trial with tumeric	46		
Field surveys		Imperata	
entomopathogens	208	cattle production	3
laboratory bioassays	208		
Finance		Importance of	
improving rural	72	Agricultural Information	159
Fish		Information systems	80, 81
mercury	54	Insecticides	221
Fisheries		Insecticide	
coral reef data	39	potato yield	89
deep sea, handline	16	cocoa pod-suckers	13
Flora of PNG	119		
Food properties of		Insects	
white yam	176	crop survey	10
		highlands pests	87
		Mimosa	88
Focus of			
Agricultural Research	157	Insects used for biological control	
		of the aquatic weed	
Food Processing	78	water hyacinth	179
Food Security	52		
Fresh Produce Industry	180	Integration of insecticides	
Fruit		management of	
export potential	83	<i>sesamia grisescens</i> warren	210
		sugarcane	210
		Ramu	210
		oil palm	4
		pest list	71

K			
Key to Agriculture Development	153	Moth Rice	112
		Mulching capsicum	43
L		N	
Leucaena cattle toxicity, fertility	2, 3	Nutrient stress sweet potato	50, 97
Literature review Glucosinolates	215	Nutrient taro roots	121
Livestock industry challenges research and development	64 63, 65	O	
		Oil Palm insects	4
M		Onions cultivar selection	104
Maize fertiliser	29, 30	Oribius inimicus Marshall	221
Management strategies	212	P	
Stunting disease	212	Parasites cattle	37
sugarcane	212		
Mangrove wood break down	44	Pathology taro	91, 101
Manure potato, maize, cassava	118	Pest species genus	216
		Oribius Marshall	216
		Papua New Guinea	216, 223
Market		Phytophthora	
Influences of large- scale small- holders	23	control in cocoa	28
diagnosing problems	74	distribution	17, 55
proposed research service	75	key	28
		fungicides	11, 32, 39
		morphology	28
		<i>Phytophthora</i>	
		<i>colocasiae</i>	11, 28
Markham valley	224	Phytophagous insects	211
Mercury fish	54	broadacre sugarcane	211
Method of assessing	139	Pigs	
Methods for screening taro	200	sweet potato as feed	50
Mimosa sensitive plant insects	88	Pilot phase rice production	181
Mites	14	Planning of Agriculture	60
		Planting material virus elimination	92

Potassium capsicum	43	R	
Policy and Strategy	173	Rainfall	38
Potato yield	89	Reaction to diseases	
crop rotation	175	rice varieties	203
PNG Cooperative Extension system in the New Millennium	158	Regeneration	105
Papua New Guinea Livestock Industry	169	Research	61, 75, 116
Papua New Guinea	224,	Resistance to leaf blight	200
Prevalence of antibodies to Leptospiral Serovars	224	Report on	
Price subsidies	71	Sheath blotch of rice	195
Primary forest	120	Review	
Processing of Agriculture Products	161	coffee nutrition	131
Production		research	131, 199
sweet potato	135	sweet potato disease	199
intercropping	135	taro	187
performance	137	banana Pseudo-stem fibre	202
economic	137	Rice	
coffee	137	fertiliser	108
broiler chicken	201	properties	115
Propagation of		consumer	
lesser yam	143	preference	102
vine cuttings	143	ratooning	85
Prospects for Palm Oil Industry	163	superior milling	
Prospects for Rubber Industry	166	varieties	100
Pumpkin pollination	24	Rice diseases	
<i>Phytophthora</i>	11, 15	incidence & severity in	
<i>Piper methysticum</i> Frost.	222	six provinces	
Q		Papua New Guinea	
Quarantine	76, 77	Rice variety nupela	
Quality Control in Agricultural Industry	171	under rainfed field	178
		S	
		Salinity	
		sweet potato	97, 99
		<i>Saussure</i>	103
		Selection of rice	
		varieties	223
		rainfed conditions	223
		Shade Trees	
		pests and diseases	18
		Sheath blotch of rice	195
		Sheep	
		growth rates and	
		parasites	20
		Smallholder Agriculture	
		Credit Scheme	172

Small holders market influences	23	Leaf blight	41, 122
		Varieties	122, 140
		Contaminants	123
		tissue cultures	123
		Foliar disease	124
		planting material	124
		treated split corm apices	125
Soil appraisal – indigenous cultivation, indigenous and scientific	51	Taro blight resistance	140
sloping, nutrition	86	Tea <i>Heliozelus</i> damage	22
volcanic	107		
types and contrasting agro-ecological zones	225	Technology Transfer	62
	225		
Soil data interpreting soil resource informative system	129	Tessaratomidae	56
Soil studies review	128	Tissue Culture virus elimination	92
Spice Industry in Papua New Guinea	168, 192	Transport Key to Agriculture Development	154
Stylo cultivar comparison	1	Tumeric fertiliser trials	29, 30
Subsidies	71	U	
Subsistence Agriculture intensification	29, 30, 31	Urbanisation	52
Sugar cane Fiji virus borers	92 106	Urban demand for food beverages betelnut tobacco	141 141 141 141
Sustainable of Agriculture Credit	155	V	
Sweet potato acidity	97	Varieties of rice	225
crop rotation	31	Vanuatu	52
cultivar trials	31	Vegetables	4, 98
earthworms	5	Volatile chemical constituents of patchouli	214
introduced	30, 31	W	
nutrient stress	97	Wasp <i>Brachon herbator</i>	112
production	5, 19		
research	19	Water stress sweet potato	97
salinity	97		
water stress	97	Weevil Borer control	48
Alternaria stem leaf blight	188	Wokabaut Somil	15
T			
Taro Alorinae disease	84		
Hybridisation	111		

Wood
break down 44

Z

Zehntner 103